
www.linuxfoundation.org

Linux Kernel
Development
How Fast It is Going, Who is Doing It,
What They Are Doing and
Who is Sponsoring the Work

25th Anniversary Edition

A Publication of The Linux Foundation
August 2016

AUTHORS

Jonathan Corbet, LWN.net
Greg Kroah-Hartman, The Linux Foundation

http://www.linuxfoundation.org

Linux Kernel Development - A 2016 Update2

Summary
The kernel which forms the core of the Linux system is
the result of one of the largest cooperative software projects
ever attempted.

Regular two- to three-month releases deliver stable updates to Linux users, each with
significant new features, added device support, and improved performance. The rate of
change in the kernel is high and increasing, with over 10,000 patches going into each recent
kernel release. Each of these releases contains the work of more than 1,600 developers
representing over 200 corporations.

Since 2005, some 14,000 individual developers from over 1,300 different companies have
contributed to the kernel. The Linux kernel, thus, has become a common resource developed
on a massive scale by companies which are fierce competitors in other areas.

This document is the seventh in a series of regular updates, which have been published
roughly annually since 2008. It covers development through the 4.7 release (which came
out on July 24, 2016), with an emphasis on the releases (3.19 to 4.7) made since the last
update. It has been a typically busy period, with nine kernel releases created, many significant
changes made, and continual growth of the kernel developer and user communities.

The Linux kernel is not a young project; we celebrate its 25th anniversary in 2016. The
software world is one of constant change, and today’s hot system often doesn’t last past
tomorrow, but Linux, after a quarter century, is going stronger than ever. Clearly, the kernel
developers are doing something right. This report provides an update on what those
developers have been doing and why they continue to be successful.

Linux Kernel Development - A 2016 Update3

Introduction
The Linux kernel is the lowest level of software running on a
Linux system.

It is charged with managing the hardware, running user programs, and maintaining the
overall security and integrity of the whole system. It is this kernel which, after its initial release
by Linus Torvalds in 1991, jump-started the development of Linux as a whole. The kernel is
a relatively small part of the software on a full Linux system (many other large components
come from the GNU project, the GNOME and KDE desktop projects, the X.org project, and
many other sources), but the kernel is the core which determines how well the system will
work and is the piece which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It is one of the
largest individual components on almost any Linux system. It also features one of the fastest-
moving development processes and involves more developers than any other open source
project. Since 2005, kernel development history is also quite well documented, thanks to the
use of the Git source code management system.

 “The Linux kernel features one of the fastest-moving development processes
 and involves more developers than any other open source project.”

Some development highlights since 3.18

The kernel development community remains extremely busy, as will be seen in the
statistics shown below. Some of the highlights from the period since the 3.18 release
on Dec. 7, 2014, include:

•	Just under 115,000 changesets have been merged from 5,062 individual developers
representing nearly 500 corporations (that we know about). The number of changesets
(in other words, the rate of change of the kernel) and number of developers have both
increased from the previous report; the number of companies involved remains steady.

•	As usual, a wide array of new features has been merged during this time period. Some of
the highlights include support for live patching of the kernel (allowing critical updates to be
applied without rebooting or downtime), extensive support for persistent-memory devices,
encrypted storage for the ext4 filesystem, adoption of the extended Berkeley packet filter
(BPF) engine for in-kernel extensibility in many subsystems, security-module stacking,
a mechanism for the handling of page faults in user space, numerous networking
enhancements with a focus on IPv6 and data-center improvements, block-layer polling

Linux Kernel Development - A 2016 Update4

support, copy offloading with the copy_file_range() system call, the second-generation
control-group API, the OrangeFS distributed filesystem, an in-kernel tracing histogram
generator, hundreds of new drivers, many thousands of fixes, and more.

•	There has been an increased focus on security on a couple of levels. Support has been
added for a number of hardware-based security features, including Intel’s memory
protection extensions and memory protection keys, and ARM’s privileged execute-never
mechanism. But there is also a renewed interest in hardening the kernel to prevent
attackers from taking over the system even when an exploitable vulnerability is present.
Much of this work is focused on bringing over ideas from the longstanding grsecurity
project; some of it is funded by The Linux Foundation’s Core Infrastructure Initiative.

•	The kernel testing infrastructure continues to improve. The “zero-day build and boot
robot” system alone found nearly 400 bugs (all of which were fixed) during this period.
There is a developing self-test framework in the kernel that is continually growing in range
and capability.

•	The release of the 4.0 kernel, ending the 3.x series, was not indicative of anything in
particular beyond the fact that the minor numbers were getting large and Linus Torvalds
was “running out of fingers and toes.” Every kernel release is a “major” release with
significant changes; the numbering scheme no longer matters much.

Above and beyond all of that, though, the process of developing the kernel and making it
better continued at a fast pace. The remainder of this document will concern itself with the
health of the development process and where all that code came from.

Development Model

Linux kernel development proceeds under a loose, time-based release model, with a new
major kernel release occurring every nine to 10 weeks. This model, which was first formalized
in 2005, gets new features into the mainline kernel and out to users with a minimum of
delay. That, in turn, speeds the pace of development and minimizes the number of external
changes that distributors need to apply. As a result, most distributor kernels contain relatively
few distribution-specific changes; this leads to higher quality and fewer differences between
distributions.

After each mainline release, the kernel’s “stable team” (currently led by Greg Kroah-Hartman)
takes up short-term maintenance, applying important fixes as they are developed. The stable
process ensures that important fixes are made available to distributors and users and that
they are incorporated into future mainline releases as well. In recent years we have seen an
increasing number of cooperative industry efforts to maintain specific kernels for periods of
one year or more. The relatively new Civil Infrastructure Platform project plans to maintain
some stable kernels for a decade or longer.

https://plus.google.com/+LinusTorvalds/posts/jmtzzLiiejc

Linux Kernel Development - A 2016 Update5

Release Frequency
The desired release period for a major kernel release is, by common consensus, eight to 12
weeks. A much shorter period would not give testers enough time to find problems with new
kernels, while a longer period would allow too much work to pile up between releases. Over
the years, the length of the development cycle has stabilized on nine or 10 weeks, making
kernel releases quite predictable.

This can be seen in the release history since 3.18.

The release history for recent kernels is:Kernel Version Release Date Days of
Development

 3.19 2015-02-08 63

4.0 2015-04-12 63

 4.1 2015-06-21 70

 4.2 2015-08-30 70

 4.3 2015-11-01 63

Kernel Version Release Date Days of
Development

 4.4 2016-01-10 70

4.5 2016-03-13 63

4.6 2016-05-15 63

4.7 2016-07-24 70

Thus, five of the releases during the period covered by this report required nine weeks, while
four required 10 weeks. In some cases, the extra week was needed to track down and fix
some final important bugs. More often, though, a one-week delay is the result of external
scheduling factors. The 4.4 release waited an extra week to avoid opening the merge window
during the holiday season, and the 10-week cycle for 4.7 happened because Linus Torvalds
was on vacation. As a general rule, the kernel community has solidified its ability to deliver
stable kernel releases on a nine-week cycle.

The trend toward shorter, more predictable release cycles is almost certainly the result of
improved discipline both before and during the development cycle: higher-quality patches
are being merged, and the community is doing a better job of fixing regressions quickly.
The increased use of automatic testing tools is also helping the community to find
(and address) problems more quickly.

Rate of Change
When preparing work for submission to the Linux kernel, developers break their changes
down into small, individual units, called “patches.” These patches usually do only one
thing to the source code; they are built on top of each other, modifying the source code
by changing, adding, or removing lines of code. Each patch should, when applied, yield a
kernel which still builds and works properly. This discipline forces kernel developers to break
their changes down into small, logical pieces; as a result, each change can be reviewed for
code quality and correctness.

Linux Kernel Development - A 2016 Update6

One other result is that the number of individual changes that go into each
kernel release is large and increasing, as can be seen in the tables below:

Kernel Version Changes (patches)

 3.19 12,461

 4.0 10,346

 4.1 11,916

4.2 13,694

 4.3 11,894

Kernel Version Changes (patches)

4.4 13,071

4.5 12,080

4.6 13,517

4.7 12,283

The kernel community had nine busy development cycles this time around, but the patch
volume fell just short of setting a record; the busiest cycle in the project’s history remains
3.15, with 13,722 patches merged.

By taking into account the amount of time required for each kernel release, one can arrive
at the number of changes accepted into the kernel per hour.

The results can be seen in these tables:

Kernel Version Changes per Hour

 3.19 8.24

 4.0 6.84

 4.1 7.09

4.2 8.15

 4.3 7.87

Kernel Version Changes per Hour

4.4 7.78

4.5 7.99

4.6 8.94

4.7 7.31

During the period between the 3.19 and 4.7 releases, the kernel community was merging
changes at an average rate of 7.8 patches per hour; that is a slight increase from the 7.71
patches per hour seen in the previous version of this report, and a continuation of the long-
term trend toward higher patch volumes.

 During the period between the 3.19 and 4.7 releases, the kernel community
was merging changes at an average rate of 7.8 patches per hour

It is worth noting that the above figures understate the total level of activity; most patches go
through a number of revisions before being accepted into the mainline kernel, and many are
never accepted at all. The ability to sustain this rate of change for years is unprecedented in
any previous public software project.

Linux Kernel Development - A 2016 Update7

Stable Updates

As mentioned toward the beginning of this document, kernel development does not stop with
a mainline release. Inevitably, problems will be found in released kernels, and patches will be
made to fix those problems. The stable kernel update process was designed to capture those
patches in a way that ensures that both the mainline kernel and current releases are fixed.
These stable updates are the base from which most distributor kernels are made.

The recent stable kernel update history looks like this:

Kernel Release Updates Fixes

 3.14 74 4,833

3.19 8 873

4.0 9 757

 4.1 17 1,643

 4.2 8 903

Kernel Release Updates Fixes

4.3 5 618

4.4 16 1,892

4.5 7 973

4.6 5 550

As of this writing, the first stable update for the 4.7 release has not yet occurred.

The normal policy for stable releases is that each kernel will receive stable updates for a
minimum of one development cycle (actually, until the -rc1 release of the second cycle
following the initial release); thus, given that updates arrive approximately one per week, there
are roughly nine updates for most kernel releases. About once each year, one release is
chosen to receive updates for an extended, two-year period; as of this writing, the 3.14 and
4.4 kernels are being maintained in this manner. Kernel version 4.9 will also be maintained as
a long-term, stable release.

It is worth noting that several other kernel releases have been adopted for stable maintenance
outside of the normal stable process. The purpose and scope of these long-term kernels
varies. The oldest of these long-term releases is currently 3.2, maintained by Debian kernel
developer Ben Hutchings; it has had 81 releases incorporating 7,072 fixes.

One might wonder why Linux kernel releases require hundreds or even thousands of fixes
after they are declared “finished.” In the end, there are many problems that are tied to specific
hardware or workloads that the developers have no access to. So there will always be
issues that come up once a kernel is made available and receives wider testing. Despite the
progress that has been made in kernel testing, the community will always be dependent on
its users to run tests and report problems.

In the end, most Linux users are running a kernel based off one of the stable updates; to do
otherwise would be to miss out on large numbers of important fixes. The stable update series
continues to prove its value by allowing the final fixes to be made to released kernels while,
simultaneously, letting mainline development move forward.

Linux Kernel Development - A 2016 Update8

Kernel Source Size

The Linux kernel keeps growing in size over time as more hardware is supported and new
features are added. For the following numbers, we have counted everything in the released
Linux source package as ``source code’’ even though a small percentage of the total is the
scripts used to configure and build the kernel, as well as a fair amount of documentation.
Those files, too, are part of the larger work, and thus merit being counted.

The information in the following tables shows the number of files and lines of code
in each kernel version.

Kernel Version Files Lines

3.19 48,440 19,134,418

4.0 48,961 19,316,184

4.1 49,459 19,516,298

4.2 50,796 20,315,522

4.3 51,571 20,625,248

Kernel Version Files Lines

4.4 52,215 20,865,919

4.5 52,908 21,158,348

4.6 53,651 21,426,491

4.7 54,391 21,724,632

The kernel has grown steadily since its first release in 1991, when there were only about
10,000 lines of code. At almost 22 million lines (up from nearly 19 million), the kernel is
almost three million lines larger than it was at the time of the previous version of this paper.
Another way of putting this it that, in the production of the 3.19 to 4.7 releases, the kernel
community added nearly 11 files and 4,600 lines of code — every day.

Total Lines of Code in the Linux Kernel

22,000,000

20,000,000

18,000,000

16,000,000

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

0

LOC

19951991 20052000 2010 2015

Linux Kernel Development - A 2016 Update9

 The kernel community added nearly 11 files and 4,600 lines
of code — every day.

Who is Doing the Work

The number of different developers who are doing Linux kernel development and the
identifiable companies that are sponsoring this work have been increasing over the different
kernel versions, as can be seen in the following tables.

Kernel Version Developers Companies

3.19 1,451 230

 4.0 1,458 214

4.1 1,539 238

4.2 1,591 251

 4.3 1,625 211

Kernel Version Developers Companies

4.4 1,575 220

4.5 1,537 231

4.6 1,678 243

4.7 1,582 221

These numbers show a continuation of the steady increase in the number of developers
contributing to each kernel release, with an all-time record being set with the 4.6 release.

Developers Contributing to Each Kernel Version

0

200

400

600

800

1000

1200

1400

1600

1800

v2
.6
.1
2

v2
.6
.1
6

v2
.6
.2
0

v2
.6
.2
4

v2
.6
.2
8

v2
.6
.3
2

v2
.6
.3
6

v3
.0

v3
.4

v3
.8

v3
.1
2

v3
.1
6

v4
.0

v4
.4

v4
.7

Developers

Since the beginning of the Git era (the 2.6.11 release in 2005), a total of 13,594 developers
have contributed to the Linux kernel; those developers worked for a minimum of 1,340
companies. The number of companies supporting work on the kernel appears to be stable
and not growing like the number of developers — but the 251 companies observed to have
supported work on 4.2 was an all-time record.

Linux Kernel Development - A 2016 Update10

Employers Supporting Work on Each Kernel Version

0

50

100

150

200

250

300

v2
.6
.1
2

v2
.6
.1
6

v2
.6
.2
0

v2
.6
.2
4

v2
.6
.2
8

v2
.6
.3
2

v2
.6
.3
6

v3
.0

v3
.4

v3
.8

v3
.1
2

v3
.1
6

v4
.0

v4
.4

v4
.7

Companies

Despite the large number of individual developers, there is still a relatively small number who
are doing the majority of the work. In any given development cycle, approximately one-third
of the developers involved contribute exactly one patch. Since the 2.6.11 release, the top
10 developers together have contributed 42,344 changes — 7.5 percent of the total. The top
30 developers contributed just over 16 percent of the total.

Those developers are:

Name Changes Percent

H Hartley Sweeten 5,960 1.1%

Al Viro 5,433 1.0%

Takashi Iwai 4,723 0.8%

Mark Brown 3,960 0.7%

David S. Miller 3,950 0.7%

Mauro Carvalho Chehab 3,943 0.7%

Tejun Heo 3,852 0.7%

Johannes Berg 3,707 0.7%

Russell King 3,467 0.6%

Thomas Gleixner 3,233 0.6%

Hans Verkuil 3,119 0.6%

Greg Kroah-Hartman 3,117 0.6%

Ingo Molnar 2,873 0.5%

Joe Perches 2,778 0.5%

Christoph Hellwig 2,697 0.5%

Name Changes Percent

Eric Dumazet 2,633 0.5%

Axel Lin 2,604 0.5%

Dan Carpenter 2,562 0.5%

Geert Uytterhoeven 2,460 0.4%

Laurent Pinchart 2,381 0.4%

Alex Deucher 2,340 0.4%

Bartlomiej Zolnierkiewicz 2,279 0.4%

Trond Myklebust 2,269 0.4%

Paul Mundt 2,268 0.4%

Daniel Vetter 2,224 0.4%

Ben Skeggs 2,216 0.4%

Arnd Bergmann 2,199 0.4%

Lars-Peter Clausen 2,176 0.4%

Arnaldo Carvalho de Melo 2,107 0.4%

Ralf Baechle 2,097 0.4%

The above numbers are drawn from the entire Git repository history, starting with 2.6.12 in 2005.

Linux Kernel Development - A 2016 Update11

If we look at the commits since the last version of this paper (3.18) through 4.7,
the picture is somewhat different:

Name Changes Percent

H Hartley Sweeten 1,456 1.3%

Geert Uytterhoeven 1,036 0.9%

Arnd Bergmann 877 0.8%

Al Viro 782 0.7%

Takashi Iwai 735 0.7%

Lars-Peter Clausen 729 0.7%

Mauro Carvalho Chehab 714 0.6%

Ville Syrjälä 707 0.6%

Linus Walleij 661 0.6%

Dan Carpenter 631 0.6%

Wolfram Sang 607 0.5%

Ben Skeggs 567 0.5%

Thierry Reding 563 0.5%

Daniel Vetter 557 0.5%

Krzysztof Kozlowski 548 0.5%

Name Changes Percent

Chaehyun Lim 545 0.5%

Eric Dumazet 543 0.5%

Christoph Hellwig 543 0.5%

Hans Verkuil 533 0.5%

Alex Deucher 493 0.4%

Thomas Gleixner 491 0.4%

Laurent Pinchart 489 0.4%

Kuninori Morimoto 488 0.4%

Arnaldo Carvalho de Melo 476 0.4%

Leo Kim 467 0.4%

Johannes Berg 459 0.4%

Mateusz Kulikowski 454 0.4%

Stephen Boyd 450 0.4%

Alexander Aring 450 0.4%

Jiri Olsa 442 0.4%

Note that many senior kernel developers, Linus Torvalds included, do not show up on these
lists. These developers spend much of their time getting other developers’ patches into the
kernel; this work includes reviewing changes and routing accepted patches toward the mainline.

Who is Sponsoring the Work

The Linux kernel is a resource which is used by a large variety of companies. Many of those
companies never participate in the development of the kernel; they are content with the
software as it is and do not feel the need to help drive its development in any particular
direction. But, as can be seen in the table above, an increasing number of companies are
working toward the improvement of the kernel.

Below we look more closely at the companies that are employing kernel developers. For each
developer, corporate affiliation was obtained through one or more of: (1) the use of company
email addresses, (2) sponsorship information included in the code they submit, or (3)
simply asking the developers directly. The numbers presented are necessarily approximate;
developers occasionally change employers, and they may do personal work out of the office.
But they will be close enough to support a number of conclusions.

There are a number of developers for whom we were unable to determine a corporate
affiliation; those are grouped under “unknown” in the tables below. With few exceptions, all of
the people in this category have contributed 10 or fewer changes to the kernel over the past
three years, yet the large number of these developers causes their total contribution to be
quite high.

Linux Kernel Development - A 2016 Update12

The category “none,” instead, represents developers who are known to be doing this work on
their own, with no financial contribution happening from any company.

The category “consultants” represents developers who contribute to the kernel as a work-for-
hire effort from different companies. Some consultant companies, such as Free Electrons and
Pengutronix, are shown individually as their contributions are a significant number.

The most active companies over the 3.19 to 4.7 development cycles were:

Company Changes Percent

Intel 14,384 12.9%

Red Hat 8,987 8.0%

none 8,571 7.7%

unknown 7,582 6.8%

Linaro 4,515 4.0%

Samsung 4,338 3.9%

SUSE 3,619 3.2%

IBM 2,995 2.7%

consultants 2,938 2.6%

Renesas Electronics 2,239 2.0%

Google 2,203 2.0%

AMD 2,100 1.9%

Texas Instruments 1,917 1.7%

ARM 1,617 1.4%

Oracle 1,528 1.4%

Company Changes Percent

Outreachy 1,524 1.4%

Vision Engraving Systems 1,456 1.3%

Free Electrons 1,453 1.3%

NXP Semiconductors 1,445 1.3%

Mellanox 1,404 1.3%

Atmel 1,362 1.2%

Broadcom 1,237 1.1%

NVidia 1,146 1.0%

Code Aurora Forum 1,033 0.9%

Imagination Technologies 963 0.9%

Huawei Technologies 937 0.8%

Facebook 877 0.8%

Pengutronix 790 0.7%

Cisco 692 0.6%

Qualcomm 656 0.6%

The top 10 contributors, including the groups “unknown” and “none,” make up nearly
54 percent of the total contributions to the kernel; that is down slightly from the previous
version of this report. It is worth noting that, even if one assumes that all of the “unknown”
contributors are working on their own time, well over 80 percent of all kernel development is
demonstrably done by developers who are being paid for their work.

Interestingly, the volume of contributions from unpaid developers has been in slow decline for
many years. It was 14.6 percent in the 2012 version of this paper, 13.6 percent in 2013, and
11.8 percent in 2014; over the period covered by this report, it has fallen to 7.7 percent. There
are many possible reasons for this decline, but, arguably, the most plausible of those is quite
simple: Kernel developers are in short supply, so anybody who demonstrates an ability to get
code into the mainline tends not to have trouble finding job offers.

Indeed, the bigger problem can be fending those offers off. As a result, volunteer developers
tend not to stay that way for long.

 There may be no other examples of such a large, common resource
being supported by such a large group of independent actors in such
a collaborative way.

Linux Kernel Development - A 2016 Update13

What we see here is that a small number of companies is responsible for a large portion of
the total changes to the kernel. But there is a “long tail” of companies (over 400 of which do
not appear in the above list) which have made significant changes since the 3.19 release.
There may be no other examples of such a large, common resource being supported by
such a large group of independent actors in such a collaborative way.

Bringing in New Developers

The decline in volunteer developers mentioned in the previous section is potentially a cause
for concern. Many, if not most of the current development community started that way, after
all; might a shortage of volunteers lead to a shortage of kernel developers in the future? The
situation is worth watching, but there are a number of reasons to not worry too much about
it at this time. The first of those was mentioned above: successful volunteers tend not to stay
volunteers for long; why do the work for free when somebody is willing to pay for it? But there
is more to the story than that.

Over the course of kernel development since the use of Git began, each kernel release has
included contributions from 200 to 300 developers who had never put a patch into the kernel
before. Outliers include 2.6.25 (333 new developers) and 2.6.20 (169 new developers). In the
3.x era, only 3.4 (with 182) has featured the work of less than 200 new developers.

For the time period covered by this paper, the history is:

Kernel Version New developers

 3.19 248

 4.0 268

4.1 278

4.2 278

4.3 293

Kernel Version New developers

4.4 253

4.5 219

4.6 286

4.7 232

That adds up to 2,355 first-time developers over the course of about 15 months. Remember
that 4,986 developers overall contributed to the kernel during this time; one can thus
conclude that nearly half of them were contributing for the first time. Many of those
developers will get their particular fix merged and never be seen again, but others will
become permanent members of the kernel development community.

Of those 2,355 new developers, 55 were known to be working on their own time, while we
have not yet been able to get information on 1,055 of them. The rest of the new developers
(1,245 — just over half) were already working for a company when they contributed their first
patch to the kernel.

Linux Kernel Development - A 2016 Update14

The companies that have been most active in bringing new developers into the
community are:

Company New Developers

Intel 205

Google 54

IBM 48

Huawei Technologies 44

Samsung 40

Company New Developers

NXP Semiconductors 39

AMD 38

Mellanox 36

MediaTek 33

Red Hat 26

It is also worth noting that the Outreachy program, which helps people from
underrepresented groups secure internships in free and open source software, was
responsible for introducing 17 new developers to the kernel community during this time.

The bottom line is that even if all of the unknowns were volunteers, more than half of our
new developers are paid to work on the kernel from their very first patch. In other words,
companies working in this area have realized that one of the best ways to find new kernel
development talent is to develop it in-house. So, for many developers, employment comes
first, and it is no longer necessary to put in time as a volunteer developer.

This fact, too, can explain the decrease in volunteers over time while simultaneously showing
that the community as a whole remains healthy.

Who is Reviewing the Work

Patches do not normally pass directly into the mainline kernel; instead, they pass through
one of over 100 subsystem trees. Each subsystem tree is dedicated to a specific part of the
kernel (examples might be SCSI drivers, x86 architecture code, or networking) and is under
the control of a specific maintainer. When a subsystem maintainer accepts a patch into a
subsystem tree, he or she will attach a “Signed-off-by” line to it. This line is a statement that
the patch can be legally incorporated into the kernel; the sequence of signoff lines can be
used to establish the path by which each change got into the kernel.

An interesting (if approximate) view of kernel development can be had by looking at signoff
lines, and, in particular, at signoff lines added by developers who are not the original authors
of the patches in question. These additional signoffs are usually an indication of review by a
subsystem maintainer. Analysis of signoff lines gives a picture of who admits code into the
kernel—who the gatekeepers are.

Linux Kernel Development - A 2016 Update15

Since 3.19, the developers who added the most non-author signoff lines are:

Developer Signoffs Percent

Greg Kroah-Hartman 13,992 13.4%

David S. Miller 9,481 9.1%

Mark Brown 4,129 3.9%

Andrew Morton 3,654 3.5%

Daniel Vetter 2,883 2.8%

Ingo Molnar 2,622 2.5%

Mauro Carvalho Chehab 2,461 2.3%

Kalle Valo 2,205 2.1%

Arnaldo Carvalho de Melo 1,706 1.6%

Rafael J. Wysocki 1,481 1.4%

Developer Signoffs Percent

Ralf Baechle 1,393 1.3%

Doug Ledford 1,363 1.3%

Jeff Kirsher 1,323 1.3%

Linus Walleij 1,210 1.2%

Felipe Balbi 1,181 1.1%

Marcel Holtmann 1,171 1.1%

Jonathan Cameron 1,070 1.0%

Michael Ellerman 1,036 1.0%

Herbert Xu 986 0.9%

Jens Axboe 970 0.9%

The total number of patches signed off by Linus Torvalds (169, or 0.2% of the total) continues
its long-term decline. That reflects the increasing amount of delegation to subsystem
maintainers who do the bulk of the patch review and merging.

Associating signoffs with employers yields the following:

Company Signoffs Percent

Red Hat 19,221 18.4%

The Linux Foundation 14,180 13.5%

Intel 12,640 12.1%

Linaro 9,069 8.7%

Google 5,570 5.3%

Samsung 4,016 3.8%

none 3,835 3.7%

SUSE 3,002 2.9%

IBM 2,226 2.1%

Code Aurora Forum 2,070 2.0%

Company Signoffs Percent

Texas Instruments 1,911 1.8%

Facebook 1,728 1.6%

Imagination Technologies 1,434 1.4%

unknown 1,355 1.3%

Free Electrons 1,230 1.2%

consultants 1,133 1.1%

ARM 1,106 1.1%

Renesas Electronics 1,102 1.1%

University of Cambridge 1,070 1.0%

Mellanox 1,014 1.0%

The signoff metric is a loose indication of review, so the above numbers need to be regarded
as approximations only. Still, one can clearly see that subsystem maintainers are rather more
concentrated than kernel developers as a whole; over half of the patches going into the kernel
pass through the hands of developers employed by just four companies. Over the years, the
concentration of subsystem maintainers has been in decline, but it is a slow process.

Linux Kernel Development - A 2016 Update16

Lessons from 25 Years of Linux

As noted in the introduction, the kernel celebrates a quarter-century of development in 2016.
Over this time, the project has gone from one strength to the next while avoiding the forks
which have split the resources of competing projects. It may be many years before we fully
understand the keys to the project’s success, but there are a few lessons that stand out
even now.

•	Short release cycles are important. In the early days of the Linux project, a new major
kernel release only came once every few years. That meant considerable delays in getting
new features to users, which was frustrating to users and distributors alike. But, more
importantly, such long cycles meant that huge amounts of code had to be integrated at
once, and that there was a great deal of pressure to get code into the next release, even if
it wasn’t ready.

		 Short cycles address all of these problems. New code is quickly made available in a
stable release. Integrating new code on a nearly constant basis makes it possible to bring
in even fundamental changes with minimal disruption. And developers know that, if they
miss one release cycle, there will be another one in two months, so there is little incentive
to try to merge code prematurely.

•	Process scalability requires a distributed, hierarchical development model. Once upon
a time, all changes went directly to Linus Torvalds, but even a developer with his talents
cannot keep up with a project moving as quickly as the kernel. Spreading out the
responsibility for code review and integration across 100 or more maintainers gives the
project the resources to cope with tens of thousands of changes without sacrificing
review or quality.

•	Tools matter. Kernel development struggled to scale until the advent of the BitKeeper
source-code management system changed the community’s practices nearly overnight;
the switch to Git brought about another leap forward. Without the right tools, a project like
the kernel would simply be unable to function without collapsing under its own weight.

•	The kernel’s strongly consensus-oriented model is important. As a general rule, a
proposed change will not be merged if a respected developer is opposed to it. This can
be intensely frustrating to developers who find code they have put months into blocked
on the mailing list. But it also ensures that the kernel remains suited to a wide ranges
of users and problems. No particular user community is able to make changes at the
expense of other groups. As a result, we have a kernel that scales from tiny systems to
supercomputers and that is suitable for a huge range of uses.

•	A related factor is the kernel’s strong “no regressions” rule; if a given kernel works in
a specific setting, all subsequent kernels must work there, too. The implementation of
this rule is not always perfect, but it still gives users assurance that upgrades will not
break their systems; as a result, they are willing to follow the kernel as it develops new
capabilities.

Linux Kernel Development - A 2016 Update17

•	Corporate participation in the process is crucial, but no single company dominates kernel
development. So, while any company can improve the kernel for its specific needs, no
company can drive development in directions that hurt the others or restrict what the
kernel can do.

•	There should be no internal boundaries within the project. Kernel developers are
necessarily focused on specific parts of the kernel, but any developer can make a change
to any part of the kernel if the change can be justified. As a result, problems are fixed
where they originate rather than being worked around, developers have a wider view of
the kernel as a whole, and even the most recalcitrant maintainer cannot indefinitely stall
needed progress in any given subsystem.

•	Finally, the kernel shows that major developments can spring from small beginnings.
The original 0.01 kernel was a mere 10,000 lines of code; now it grows by more than that
every few days. Some of the rudimentary, tiny features that developers are adding now
will develop into significant subsystems in the future.

Above all, 25 years of kernel history show that sustained, cooperative effort can bring about
common resources that no group would have been able to develop on its own.

Linux Kernel Development - A 2016 Update18

Conclusion
The Linux kernel is one of the largest and most successful
open source projects that has ever come about.

The huge rate of change and number of individual contributors show that it has a vibrant and
active community, constantly causing the evolution of the kernel in response to the number
of different environments it is used in. This rate of change continues to increase, as does
the number of developers and companies involved in the process; thus far, the development
process has proved that it is able to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the development effort, even
if many companies that could benefit from contributing to Linux have, thus far, chosen
not to. With the current expansion of Linux in the server, desktop, mobile and embedded
markets, it’s reasonable to expect this number of contributing companies – and individual
developers – will continue to increase. The kernel development community welcomes new
developers; individuals or corporations interested in contributing to the Linux kernel are
encouraged to consult “How to participate in the Linux community” (which can be found at
https://www.linux.com/publications/how-participate-linux-community) or to contact the
authors of this paper or The Linux Foundation for more information.

Thanks
The authors would like to thank the thousands of individual kernel contributors, without them,
papers like this would not be interesting to anyone.

Resources
Many of the statistics in this article were generated by the “gitdm” tool, written by
Jonathan Corbet. Gitdm is distributable under the GNU GPL; it can be obtained from
git://git.lwn.net/gidm.git.

The information for this paper was retrieved directly from the Linux kernel releases as found
at the kernel.org web site and from the Git kernel repository. The analysis in this document is
based on the Git contribution data alone and does not in any way aim to identify or purport
copyright ownership.

https://www.linux.com/publications/how-participate-linux-community
http://kernel.org

The Linux Foundation promotes, protects and standardizes Linux by
providing unified resources and services needed for open source to
successfully compete with closed platforms.

To learn more about The Linux Foundation or our other initiatives
please visit us at www.linuxfoundation.org

http://www.linuxfoundation.org

