
www.linuxfoundation.org

Linux Kernel
Development
How Fast is it Going, Who is Doing It, What

Are They Doing and Who is Sponsoring the Work

A Linux Foundation publication
February 2015

AUTHORS

Jonathan Corbet, LWN.net

Greg Kroah-Hartman, The Linux Foundation

Amanda McPherson, Linux Foundation

Linux Kernel Development - A 2015 Update2

Summary
The kernel which forms the core of the Linux system is the
result of one of the largest cooperative software projects ever
attempted.

Regular 2-3 month releases deliver stable updates to Linux users, each with significant new
features, added device support, and improved performance. The rate of change in the kernel
is high and increasing, with over 10,000 patches going into each recent kernel release.
Each of these releases contains the work of over 1,400 developers representing over
200 corporations.

Since 2005, some 11,800 individual developers from nearly 1,200 different companies
have contributed to the kernel. The Linux kernel, thus, has become a common resource
developed on a massive scale by companies which are fierce competitors in other areas.

This is the sixth in a series of regular updates to this document, which has been published
roughly annually since 2008. It covers development through the 3.18 release (which came
out on December 7, 2014), with an emphasis on the releases (3.11 to 3.18) made since
the last update. It has been a typically busy period, with eight kernel releases created,
many significant changes made, and continual growth of the kernel developer and user
communities.

Linux Kernel Development - A 2015 Update3

Introduction
The Linux kernel is the lowest level of software running on a Linux system. It is charged
with managing the hardware, running user programs,and maintaining the overall security and
integrity of the whole system. It is this kernel which, after its initial release by Linus Torvalds in
1991, jump-started the development of Linux as a whole.

The kernel is a relatively small part of the software on a full Linux system (many other large
components come from the GNU project, the GNOME and KDE desktop projects, the X.org
project, and many other sources), but it is the core which determines how well the system
will work and is the piece which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It is one of the
largest individual components on almost any Linux system.

It also features one of the fastest-moving development processes and involves more
developers than any other open source project. Since 2005, kernel development history is
also quite well documented, thanks to the use of the Git source code management system.

Some 2013-14 kernel development highlights

The kernel development community remains extremely busy, as well be seen in the
following statistics.

•	Just over 96,000 changesets have been merged from 4,169 individual developers representing
518 corporations (that we know about). The number of changesets (in other words, the rate of
change of the kernel) and number of developers have both increased from the previous report,
but the number of participating companies is down slightly.

•	 As usual, a wide array of new features has been merged during this time period. Some of the
highlights include the O_TMPFILE option for the creation of temporary files, NFS 4.2 support,
virtualization support on the ARM64 architecture with Xen and KVM, the “zswap” compressed
swap cache, support for using GPU rendering engines independently of a graphical display,
the multiqueue block layer for improved high-end disk I/O performance, the “nftables” firewall
that will eventually replace iptables, the realtime earliest-deadline-first scheduler, a vast array
of networking improvements, a major reworking of the control group subsystem, “file sealing”
support for secure interprocess communication, the “overlayfs” union filesystem, hundreds of
new drivers, thousands of fixes, and more.

•	The kernel testing infrastructure continues to improve. The “zero-day build and boot robot” system
alone found nearly 500 bugs (all of which were fixed) during this period. There is a rudimentary
self-test framework in the kernel now that will be improved considerably in the coming year.

Above and beyond all of that, though, the process of developing the kernel and making it
better continued at a fast pace. The remainder of this document will concern itself with the
health of the development process and where all that code came from.

Linux Kernel Development - A 2015 Update4

Linux kernel development proceeds under a loose, time-based
release model, with a new major kernel release occurring every
2-3 months.

This model, which was first formalized in 2005, gets new features into the mainline kernel and out
to users with a minimum of delay.

That, in turn, speeds the pace of development and minimizes the number of external
changes that distributors need to apply. As a result, most distributor kernels contain
relatively few distribution-specific changes; this leads to higher quality and fewer differences
between distributions.

After each mainline release, the kernel’s “stable team” (currently led by Greg Kroah-Hartman)
takes up short-term maintenance, applying important fixes as they are developed. The stable
process ensures that important fixes are made available to distributors and users and that they
are incorporated into future mainline releases as well.

In recent years we have seen an increasing number of cooperative industry efforts to
maintain specific kernels for periods of one year or more.

Release Frequency
The desired release period for a major kernel release is, by common consensus, 8 - 12
weeks. A much-shorter period would not give testers enough time to find problems with new
kernels, while a longer period would allow too much work to pile up between releases.

The actual time between kernel releases tends to vary a bit, depending on the size of
the release and the difficulty encountered in tracking down the last regressions, but that
variation has decreased in recent years.

The release history for recent kernels is:

Kernel Release Version Date Days of development

3.11 2013-09-02 64

3.12 2013-11-03 62

3.13 2014-01-19 77

3.14 2014-03-30 70

3.15 2014-06-08 70

3.16 2014-08-03 56

3.17 2014-10-05 63

3.18 2014-12-07 63

Over time, kernel development cycles have slowly been getting shorter. The previous version
of this report stated that the average cycle lasted about 70 days; now the average is just
under 66 days.

Linux Kernel Development - A 2015 Update5

One could argue that a number of kernels in 2014 might have been released even more
quickly had the development cycle not aligned poorly with important developer conferences.

The trend toward shorter release cycles is almost certainly the result of improved discipline
both before and during the development cycle: higher-quality patches are being merged, and
the community is doing a better job of fixing regressions quickly.

The increased use of automatic testing tools is also helping the community to find (and
address) problems more quickly.

Rate of Change

When preparing work for submission to the Linux kernel, developers break their changes
down into small, individual units, called “patches.”

These patches usually do only one thing to the source code; they are built on top of each
other, modifying the source code by changing, adding, or removing lines of code.

Each patch should, when applied, yield a kernel which still builds and works properly. This
discipline forces kernel developers to break their changes down into small, logical pieces; as
a result, each change can be reviewed for code quality and correctness.

One other result is that the number of individual changes that go into each kernel
release is large and increasing, as can be seen in the table below:

Kernel Version Changes (patches)

3.11 10,893

3.12 10,927

3.13 12,127

3.14 12,311

3.15 13,722

3.16 12,804

3.17 12,354

3.18 11,379

The 3.15 development cycle was the busiest ever in the kernel’s history. By taking into
account the amount of time required for each kernel release, one can arrive at the number of
changes accepted into the kernel per hour.

The results can be seen in this table:

Kernel Version Changes per Hour

3.11 7.09

3.12 7.34

3.13 6.56

3.14 7.33

3.15 8.17

Linux Kernel Development - A 2015 Update6

Kernel Version Changes per Hour

3.16 9.53

3.17 8.17

3.18 7.53

The overall rate for the period covered in the previous version of this paper (3.2 to 3.10) was
7.14 patches per hour.

As can be seen from the tables above, the number of changes being merged into each
release is growing over time, even as the development cycle is getting shorter, so, as one
would expect, the number of changes per hour is growing.

Since the release of the 3.10 kernel, the development community has been merging patches
at an average rate of 7.71 patches per hour.

It is worth noting that the above figures understate the total level of activity; most patches go
through a number of revisions before being accepted into the mainline kernel, and many are
never accepted at all. The ability to sustain this rate of change for years is unprecedented in
any previous public software project.

Stable Updates

As mentioned toward the beginning of this document, kernel development does not stop
with a mainline release. Inevitably, problems will be found in released kernels, and patches
will be made to fix those problems.

The stable kernel update process was designed to capture those patches in a way that
ensures that both the mainline kernel and current releases are fixed. These stable updates
are the base from which most distributor kernels are made.

The recent stable kernel update history looks like this:

Kernel Release Updates Fixes

3.10 65 4,008

3.11 10 688

3.12 36 3,969

3.13 11 908

3.14 29 2,563

3.15 10 701

3.16 7 876

3.17 8 890

3.18 3 252

The number of updates for the 3.18 release is low because that kernel was quite new when
this report was written.

Linux Kernel Development - A 2015 Update7

The normal policy for stable releases is that each kernel will receive stable updates for a
minimum of one development cycle (actually, until the -rc1 release of the second cycle
following the initial release); thus we have roughly nine approximately weekly updates for
most kernel releases. About once each year, one release is chosen to receive updates for an
extended, two-year period; as of this writing, the 3.10 and 3.14 kernels are being maintained
in this manner.

It is worth noting that some other kernel releases have been adopted for stable maintenance
outside of the normal stable process. In the above list, the large number of updates for 3.12
results from its ongoing maintenance by Jiri Slaby.

In the end, most Linux users are running a kernel based off one of the stable updates; to
do otherwise would be to miss out on large numbers of important fixes. The stable update
series continues to prove its value by allowing the final fixes to be made to released kernels
while, simultaneously, letting mainline development move forward.

Kernel Source Size

The Linux kernel keeps growing in size over time as more hardware is supported and new
features are added. For the following numbers, we have counted everything in the released
Linux source package as ``source code’’ even though a small percentage of the total is the
scripts used to configure and build the kernel, as well as a minor amount of documentation.
Those files, too, are part of the larger work, and thus merit being counted.

The information in the following table shows the number of files and lines in each
kernel version.

Kernel Release Files Lines

3.11 44,017 17,407,037

3.12 44,601 17,730,630

3.13 44,985 17,934,674

3.14 45,950 18,275,747

3.15 46,795 18,636,331

3.16 47,440 18,882,881

3.17 47,505 18,868,140

3.18 47,986 18,997,848

The kernel has grown steadily since its first release in 1991, when there were only about
10,000 lines of code. At almost 19 million lines (up from 17 million), the kernel is almost two
million lines larger than it was at the time of the previous version of this paper.

Sharp-eyed readers may note that the number of lines of code actually fell slightly in the 3.17
release; that was the result of the removal of a number of old and unmaintained drivers. That
is only the second time in the entire history of kernel development that the kernel has gotten
smaller; the first was the release of 2.6.36 in 2010.

Linux Kernel Development - A 2015 Update8

Who is Doing the Work

The number of different developers who are doing Linux kernel development and the identifiable
companies who are sponsoring this work have been increasing over the different kernel versions,
as can be seen in the following table.

Kernel Release Developers Companies

3.11 1,266 225

3.12 1,332 244

3.13 1,361 228

3.14 1,446 240

3.15 1,492 237

3.16 1,477 234

3.17 1,433 241

3.18 1,458 239

These numbers show a continuation of the steady increase in the number of developers
contributing to each kernel release—we have nearly 200 more developers participating in each
development cycle at the end of the study period than the beginning.

Since the beginning of the Git era (the 2.6.11 release in 2005), a total of 11,695 developers
have contributed to the Linux kernel; those developers worked for a minimum of 1,230
companies. Interestingly, the number of companies supporting work on the kernel appears
to be declining slowly, suggesting that developers are consolidating under a (slightly) smaller
number of employers.

Despite the large number of individual developers, there is still a relatively small number who
are doing the majority of the work. In any given development cycle, approximately 1/3 of the
developers involved contribute exactly one patch. Since the 2.6.11 release, the top ten developers
have contributed 36,664 changes — 8.2% of the total. The top thirty developers contributed just
over 17% of the total.

Those developers are:

Name Changes Percent

H Hartley Sweeten 4,967 1.1%

Al Viro 4,767 1.0%

Takashi Iwai 4,105 0.9%

Mark Brown 3,866 0.8%

David S. Miller 3,849 0.8%

Tejun Heo 3,492 0.8%

Johannes Berg 3,299 0.7%

Mauro Carvalho Chehab 3,275 0.7%

Russell King 3,051 0.7%

Greg Kroah-Hartman 2,993 0.7%

Thomas Gleixner 2,752 0.6%

Hans Verkuil 2,667 0.6%

Linux Kernel Development - A 2015 Update9

Name Changes Percent

Joe Perches 2,488 0.5%

Ingo Molnar 2,474 0.5%

Axel Lin 2,271 0.5%

Paul Mundt	 2,268 0.5%

Bartlomiej Zolnierkiewicz 2,221 0.5%

Christoph Hellwig 2,206 0.5%

Eric Dumazet	 2,129 0.5%

Sachin Kamat	 2,065 0.4%

Dan Carpenter 1,991 0.4%

Ralf Baechle	 1,990 0.4%

Trond Myklebust 1,965 0.4%

Laurent Pinchart 1,936 0.4%

Adrian Bunk	 1,919 0.4%

Alex Deucher	 1,880 0.4%

Jingoo Han	 1,837 0.4%

Daniel Vetter 1,770 0.4%

Andrew Morton 1,750 0.4%

Randy Dunlap	 1,716 0.4%

The above numbers are drawn from the entire Git repository history, starting with 2.6.12.

If we look at the commits since the last version of this paper (3.10) through 3.18,
the picture is somewhat different:

Name Changes Percent

H Hartley Sweeten 2,089 2.2%

Sachin Kamat	 1,374 1.4%

Jingoo Han	 1,230 1.3%

Laurent Pinchart 953 1.0%

Jes Sorensen 772 0.8%

Daniel Vetter	 764 0.8%

Malcolm Priestley 745 0.8%

Alex Deucher 727 0.8%

Lars-Peter Clausen 697 0.7%

Geert Uytterhoeven 685 0.7%

Ville Syrjälä	 669 0.7%

Mark Brown 653 0.7%

Takashi Iwai	 601 0.6%

Tejun Heo	 594 0.6%

Joe Perches	 581 0.6%

Dan Carpenter 538 0.6%

Axel Lin 526 0.5%

Al Viro	 524 0.5%

Russell King	 517 0.5%

Linux Kernel Development - A 2015 Update10

Name Changes Percent

Hans Verkuil	 512 0.5%

Mauro Carvalho Chehab 511 0.5%

Fabio Estevam 507 0.5%

Johan Hedberg 502 0.5%

Navin Patidar	 483 0.5%

Greg Kroah-Hartman 477 0.5%

Linus Walleij	 473 0.5%

Ben Skeggs 458 0.5%

Fabian Frederick 457 0.5%

Marcel Holtmann 436 0.5%

Kuninori Morimoto 434 0.4%

Note that many senior kernel developers, Linus Torvalds included, do not show up on these
lists. These developers spend much of their time getting other developers’ patches into
the kernel; this work includes reviewing changes and routing accepted patches toward the
mainline.

Who is Sponsoring the Work

The Linux kernel is a resource which is used by a large variety of companies. Many of those
companies never participate in the development of the kernel; they are content with the
software as it is and do not feel the need to help drive its development in any particular
direction.

But, as can be seen in the table above, an increasing number of companies are working
toward the improvement of the kernel.

Below we look more closely at the companies which are employing kernel developers. For
each developer, corporate affiliation was obtained through one or more of the following
methods: (1) the use of company email addresses, (2) sponsorship information included in
the code they submit, or (3) simply asking the developers directly.

The numbers presented are necessarily approximate; developers occasionally change
employers, and they may do personal work out of the office. But they will be close enough
to support a number of conclusions.

There are a number of developers for whom we were unable to determine a corporate
affiliation; those are grouped under “unknown” in the table below.

With few exceptions, all of the people in this category have contributed ten or fewer changes
to the kernel over the past three years, yet the large number of these developers causes
their total contribution to be quite high.

The category “none,” instead, represents developers who are known to be doing this work
on their own, with no financial contribution happening from any company.

Linux Kernel Development - A 2015 Update11

Company Changes Total

None 11,968 12.4%

Intel 10,108 10.5%

Red Hat	 8,078 8.4%

Linaro 5,415 5.6%

Samsung 4,290 4.4%

Unknown 3,842 4.0%

IBM	 3,081 3.2%

SUSE	 2,890 3.0%

Consultants 2,451 2.5%

Texas Instruments 2,269 2.4%

Vision Engraving Systems 2,089 2.2%

Google 2,048 2.1%

Renesas Electronics 2,004 2.1%

Freescale 1,690 1.8%

Free Electrons 1,463 1.5%

FOSS Outreach Program for Women 1,418 1.5%

Oracle	 1,166 1.2%

AMD	 1,109 1.1%

NVidia	 1,078 1.1%

Broadcom	 1,001 1.0%

Huawei Technologies 971 1.0%

ARM 788 0.8%

Pengutronix 763 0.8%

Cisco 723 0.7%

Qualcomm 679 0.7%

Fujitsu 672 0.7%

Linux Foundation 627 0.6%

Imagination Technologies 579 0.6%

QLogic	 545 0.6%

Ingics Technology 526 0.5%

The top 10 contributors, including the groups “unknown” and “none,” make up nearly 57% of
the total contributions to the kernel.

It is worth noting that, even if one assumes that all of the “unknown” contributors were working
on their own time, well over 80% of all kernel development is demonstrably done by developers
who are being paid for their work.

Interestingly, the volume of contributions from unpaid developers has been in slow decline for
many years. It was 14.6% in the 2012 version of this paper, and 13.6% in 2013; now it is 11.8%.

There are many possible reasons for this decline, but, arguably, the most plausible of those
is quite simple: Kernel developers are in short supply, so anybody who demonstrates an
ability to get code into the mainline tends not to have trouble finding job offers. Indeed, the
bigger problem can be fending those offers off.

Linux Kernel Development - A 2015 Update12

As a result, volunteer developers tend not to stay that way for long. What we see here is that a
small number of companies is responsible for a large portion of the total changes to the kernel.

But there is a “long tail” of companies (over 400 of which do not appear in the above list) which
have made significant changes since the 3.10 release. There may be no other examples of such
a large, common resource being supported by such a large group of independent actors in such
a collaborative way.

Bringing in New Developers

The decline in volunteer developers mentioned in the previous section is potentially a cause for
concern. Many, if not most of the current development community started that way, after all;
might a shortage of volunteers lead to a shortage of kernel developers in the future?

The situation is worth watching, but there are a number of reasons to not worry too much
about it at this time. The first of those was mentioned above: successful volunteers tend not
to stay volunteers for long; why do the work for free when somebody is willing to pay for it?
But there is more to the story than that.

Over the course of kernel development since the use of Git began, each kernel release has
included contributions from 200–300 developers who had never put a patch into the kernel
before. Outliers include 2.6.25 (333 new developers) and 2.6.20 (169 new developers). In the
3.x era, only 3.4 (with 182) has featured the work of less than 200 new developers.

For the time period covered by this paper, the history is:

Kernel Version New developers

3.11 205

3.12 219

3.13 219

3.14 255

3.15 261

3.16 272

3.17 262

3.18 270

That adds up to 1,963 first-time developers over the course of about fifteen months.
Remember that 4,171 developers overall contributed to the kernel during this time; one can
thus conclude that nearly half of them were contributing for the first time.

Many of those developers will get their particular fix merged and never be seen again, but
others will become permanent members of the kernel development community. Of those
1,963 new developers, 169 were known to be working on their own time, while we have not
yet been able to get information on 778 of them. The rest of the new developers (1,016 —
just over half) were already working for a company when they contributed their first patch to
the kernel.

Linux Kernel Development - A 2015 Update13

The companies that have been most active in bringing new developers into the
community are:

Company # New devs

Intel 147

Samsung 48

IBM 47

Google 43

Huawei Technologies 37

Red Hat 32

Freescale 31

Linaro	 26

Texas Instruments 23

Marvell 15

NVIDIA 15

The FOSS Outreach Program for Women was responsible for introducing 24 new developers
to the kernel community during this time. The sponsors of the program’s kernel fellowships
were Codethink (one), Intel (three) and Linux Foundation (three).

The bottom line is that even if all of the unknowns were volunteers, more than half of our
new developers are paid to work on the kernel from their very first patch. In other words,
companies working in this area have realized that one of the best ways to find new kernel
development talent is to develop it in-house.

So, for many developers, employment comes first, and it is no longer necessary to put in
time as a volunteer developer. This fact, too, can explain the decrease in volunteers over
time while simultaneously showing that the community as a whole remains healthy.

Who is Reviewing the Work

Patches do not normally pass directly into the mainline kernel; instead, they pass through
one of over 100 subsystem trees. Each subsystem tree is dedicated to a specific part of the
kernel (examples might be SCSI drivers, x86 architecture code, or networking) and is under
the control of a specific maintainer.

When a subsystem maintainer accepts a patch into a subsystem tree, he or she will attach
a “Signed-off-by” line to it. This line is a statement that the patch can be legally incorporated
into the kernel; the sequence of signoff lines can be used to establish the path by which each
change got into the kernel.

An interesting (if approximate) view of kernel development can be had by looking at signoff
lines, and, in particular, at signoff lines added by developers who are not the original authors
of the patches in question. These additional signoffs are usually an indication of review by a
subsystem maintainer. Analysis of signoff lines gives a picture of who admits code into the
kernel–who the gatekeepers are.

Linux Kernel Development - A 2015 Update14

Since 3.10, the developers who added the most non-author signoff lines are:

Developer Signoffs Percent

Greg Kroah-Hartman 13,028 14.4%

David S. Miller 7,780 8.6%

Mark Brown	 3,735 4.1%

Andrew Morton 3,726 4.1%

Mauro Carvalho Chehab 2,706 3.0%

Daniel Vetter 2,554 2.8%

John W. Linville 2,288 2.5%

Rafael J. Wysocki 1,614 1.8%

Simon Horman 1,339 1.5%

Ingo Molnar	 1,243 1.4%

Linus Walleij	 1,213 1.3%

Arnaldo Carvalho de Melo 1,044 1.2%

Jeff Kirsher	 916 1.0%

Benjamin Herrenschmidt 906 1.0%

Shawn Guo	 905 1.0%

Jonathan Cameron 871 1.0%

Felipe Balbi	 861 1.0%

Jason Cooper	 783 0.9%

Chris Mason	 761 0.8%

Johannes Berg 748 0.8%

The total number of patches signed off by Linus Torvalds (329, or 0.4% of the total) continues
its long-term decline. That reflects the increasing amount of delegation to subsystem
maintainers who do the bulk of the patch review and merging.

Associating signoffs with employers yields the following:

Company Signoffs Percent

Red Hat 16,963 18.8%

Linux Foundation 13,357 14.8%

Intel 11,045 12.2%

Linaro	 8,422 9.3%

Google 5,207 5.8%

Samsung 4,728 5.2%

None 3,372 3.7%

SUSE	 2,653 2.9%

IBM 2,208 2.4%

Texas Instruments 1,948 2.2%

Renesas Electronics 1,409 1.6%

Consultants 1,362 1.5%

Facebook	 1,006 1.1%

Linux Kernel Development - A 2015 Update15

Company Signoffs Percent

Broadcom 922 1.0%

University of Cambridge 871 1.0%

Unknown 805 0.9%

Parallels 734 0.8%

Fusion-IO 684 0.8%

Pure Storage 620 0.7%

Cisco 543 0.6%

The signoff metric is a loose indication of review, so the above numbers need to be regarded
as approximations only.

Still, one can clearly see that subsystem maintainers are rather more concentrated than
kernel developers as a whole; over half of the patches going into the kernel pass through the
hands of developers employed by just four companies.

That said, subsystem maintainers are less concentrated than they once were, and that trend
appears to be continuing. Perhaps the most significant trend in this area is the increasing
presence of the mobile and embedded sector.

Developers from these companies have been contributing changes at a high rate for some
years now, but it has naturally taken longer for them to work up to the level of subsystem
maintenance.

One could well argue that firms involved with enterprise computing still have a dominant
role in the direction of kernel development, but the influence of mobile and embedded
companies is on the rise.

Linux Kernel Development - A 2015 Update16

Conclusion
The Linux kernel is one of the largest and most successful
open source projects that has ever come about.

The huge rate of change and number of individual contributors show that it has a vibrant and
active community, constantly causing the evolution of the kernel in response to the number
of different environments it is used in. This rate of change continues to increase, as does the
number of developers and companies involved in the process; thus far, the development process
has proved that it is able to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the development effort, even if
many companies which could benefit from contributing to Linux have, thus far, chosen not to.
With the current expansion of Linux in the server, desktop, mobile and embedded markets, it’s
reasonable to expect this number of contributing companies – and individual developers – will
continue to increase.

The kernel development community welcomes new developers; individuals or corporations
interested in contributing to the Linux kernel are encouraged to consult “How to participate
in the Linux community” (which can be found at www.linuxfoundation.org/content/how-
participate-linux-community) or to contact the authors of this paper or The Linux Foundation
for more information.

Authors
The report is co-authored by Jon Corbet, Linux kernel developer and editor of LWN.net; Greg
Kroah-Hartman, Linux kernel maintainer and Linux Foundation fellow; and Amanda McPherson,
chief marketing officer at The Linux Foundation.

Thanks
The authors would like to thank the thousands of individual kernel contributors, without
them, papers like this would not be interesting to anyone.

Resources
Many of the statistics in this article were generated by the “gitdm” tool, written by Jonathan Corbet.
Gitdm is distributable under the GNU GPL; it can be obtained from git://git.lwn.net/gitdm.git.

The information for this paper was retrieved directly from the Linux kernel releases as
found at the kernel.org website and from the Git kernel repository. Some of the logs from
the Git repository were cleaned up by hand due to email addresses changing over time,
and minor typos in authorship information. A spreadsheet was used to compute a number
of the statistics. All of the logs, scripts, and spreadsheet can be found at github.com/
gregkh/kernel-history

The Linux Foundation promotes, protects and standardizes Linux by
providing unified resources and services needed for open source to
successfully compete with closed platforms.

To learn more about The Linux Foundation or our other initiatives
please visit us at www.linuxfoundation.org

