
Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

SJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc ppppppppppppppppppppppppSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc pppppppppppppppppppppppp

AppDevMozilla-13 Page 434 Thursday, December 4, 2003 6:36 PM

435

C H A P T E R

Overlay
database

XBL
definitions

Keyboard

Desktop
themes

Fonts

Default
CSS

W3C
standards

DTDs

Mouse

RDF

SJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc ppppppppppppppppppppppppSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc pppppppppppppppppppppppp

DOM

EventsFrames

GesturesKeycodesWidgets

GUI
toolkits

Skins

13

Listboxes and Trees

AppDevMozilla-13 Page 435 Thursday, December 4, 2003 6:36 PM

436 Listboxes and Trees Chap. 13

This chapter describes the construction of XUL’s most powerful widgets:

<list-
box>

 and

<tree>

. These tags are designed for data-intensive applications.
The

<listbox>

 tag provides an inline, scrollable, multirecord list, simi-
lar to a menu, but it may contain more than one column. The

<tree>

 tag pro-
vides a flat or hierarchically indented list of tree-structured records.

<tree>

 is
similar to Windows Explorer on Microsoft Windows, or better yet, the Finder
in the Macintosh.

<tree>

 can do everything that

<listbox>

 does, and more,
but

<listbox>

 has a simpler and more direct syntax. The syntax of

<tree>

can become quite complex.
To see a

<tree>

 in action, just open the Classic Mail & News client. The
three-pane arrangement consists of three

<tree>

 tags, one per pane. A simi-
lar example is the Bookmark Manager, which displays all the available book-
marks in a single

<tree>

. Spotting a

<listbox>

 is harder because that
functionality can also be provided by

<tree>

. The

Appearance, Themes

panel of
the Preferences window in Classic Mozilla is an example of a

<listbox>

.
Applications focused on data entry or data management are more tightly

designed than Web pages. They tend to pack an available window full of infor-
mation. They don’t waste space on graceful layout. A packed display needs
widgets that can economically organize the display of structured data.

<list-
box>

 and

<tree>

 have this design constraint in mind. Both tags manage con-
tent in a scrollable window that is highly interactive.

Another feature of data management applications is multirecord (or
record set) displays. Applications as diverse as email clients, order-entry,
point-of-sale, and network management can all display several records at
once. Traversing through a set of structured data items is data browsing in the
same way that clicking through hypertext links is Web browsing. The interac-
tive, scrolling nature of

<listbox>

 and

<tree>

 is perfect for such uses.
These final XUL widgets require that we visit the GUI of the Mozilla Plat-

form yet again. The NPA diagram at the start of this chapter shows the bits of
Mozilla engaged by simple use of these XUL tags. Both

<listbox>

 and

<tree>

are very fully featured tags. They extend right across the user-interface features
of the platform, as well as extending up into the DOM, frame, and CSS2 styling
infrastructure. Both tags have features that allow scripts to pry further into the
frame system than any other XUL tag. Their other novel feature is support for
multiple selection. This chapter covers all that, but leaves the equally complex
matter of data-enabling these widgets to Chapter 14, Templates.

Mozilla presents many options for displaying structured data, such as
the humble form. Before turning to

<listbox>

 and

<tree>

, we briefly con-
sider another simple system—the text grid.

13.1 T

EXT

 G

RIDS

Text input tags can be arranged into a text grid. A text grid is an informal
term for a two-dimensional array of editable boxes. An obvious example of a

AppDevMozilla-13 Page 436 Thursday, December 4, 2003 6:36 PM

13.1 Text Grids 437

text grid is a spreadsheet, with its columns and rows. Small text grids are also
ideal for the detailed part of master-detail forms and for working with sets of
records. XUL has no direct support for text grids, but such things are easy to
design using the

<textbox>

 tag.
The Web tends to ignore the flexibility of textboxes. On the Web, it is cus-

tomary to see data-entry forms designed so that individual fields are spaced
well apart. Requests for contact details or for purchase order details are often
displayed so that there is one form element per line. This makes text boxes
appear to be bulky and spacious things.

In fact, the HTML

<INPUT>

 tag and the XUL

<textbox>

 tag can be
styled to be quite slim. Only simple styles are required:

textbox {
 border : solid thin;
 border-width : 1px;
 padding : 0px;
 margin : 0px;
}

input:focus { background-color : lightgrey; }

The second style serves to ensure that the field with the current focus is
background-highlighted when it has the focus. Recall from Chapter 7, Forms
and Menus, that

<textbox>

 also contains an

<html:input>

 tag. Figure 13.1
shows an example application using these thinned-down textboxes.

Each

<textbox>

 is the contents of one cell in a

<grid>

. The XUL code is
routine. XUL’s navigation model and focus ring ensures that each

<textbox>

can be tabbed into in turn, and that each field is background-highlighted when
it receives the focus. This results in the look and feel of traditional data man-
agement applications, which are fast and efficient for data entry operators to
use. Properties dialog boxes, typically accessed from content menus, can’t pos-
sibly compete for speed.

A collection of

<textbox>

 tags is hardly a complete solution—the whole
back end of the application needs to be added. Such a XUL page could end up
with many event handlers whose only purpose is to coordinate data against
the user’s navigation. There is significant scripting design work required for
such a window (called a screen in older jargon).

Web-based systems do not follow this kind of look and feel for many rea-
sons. There is the difficulty of POSTing multiple records at once; the need to

Fig. 13.1 A simple text grid using the <textbox> tag.

AppDevMozilla-13 Page 437 Thursday, December 4, 2003 6:36 PM

438 Listboxes and Trees Chap. 13

provide accessibility support; the complexity of implementation; and the likeli-
hood that the sizes of browser windows will vary greatly. XUL applications,
built to be vertical solutions, are not always so constrained, and the perfor-
mance gains delivered to users may be tempting.

Both

<listbox>

 and

<tree>

 improve on and specialize the concept of a
text grid. A text grid made out of XUL tags is the most general arrangement
possible. It may also be the most useful if a lot of data entry is required.

13.2 L

ISTBOXES

The

<listbox>

 tag is similar in construction to the

<grid>

 tag, but in
appearance and behavior it is more like the

<menulist>

 tag. A listbox is a
vertically arranged set of records or rows, where each record has one or more
subparts.

HTML’s

<SELECT rows= >

 tag has a similar implementation to

<list-
box>

. That HTML tag produces an inline menu rather than a popup one. The

<SELECT>

 tag is both robust and standard, but the

<listbox>

 tag is not yet
either. In Mozilla versions up to 1.4 at least,

<listbox>

 is somewhat fragile,
so tread carefully when using it. Despite that weakness, it is a powerful tool
when used properly.

13.2.1 Visual Appearance

To see a

<listbox>

 at work, open the Mozilla Preferences dialog box (

Edit |
Preferences

) and look at the

Appearance

,

Themes

 panel on the right. That
white panel displaying theme names like Classic and Modern is a listbox.

Figure 13.2 shows two listboxes with most of the available features visible.
The listbox on the left is a one-column listbox. This format is used for

HTML’s

<SELECT>

. The listbox has height and width style rules that have
defaults of

200px

 each. If the box area is forced smaller by layout issues, then
a vertical scrollbar will appear, and any contained

<label>

 text might be
cropped. Each row can also contain a leading icon and a leading checkbox, as
shown. In a real application, all rows would be iconized or checkboxed, not just
a few sample rows. In this example, row 4 was checked by clicking on the row,
and then row 3 was selected as the current row.

Fig. 13.2 Two listboxes showing popular features.

AppDevMozilla-13 Page 438 Thursday, December 4, 2003 6:36 PM

13.2 Listboxes 439

The listbox on the right of Figure 13.3 is a multicolumn listbox. It has
two columns, but any number of columns is possible. The top row is an
optional row of column headings. The first column heading has an icon on both
left and right of its text. The left icon is an arbitrary image, added using a
style. The right icon is a special-purpose image that shows the sort order of the
rows underneath that heading, and therefore of all rows. That right icon is
placed with an XML attribute. The other rows (also called

items

) of this listbox
contain two cells each. Icons can be placed in these cells, although it is not
very meaningful to do so. Checkboxes can also be placed in these cells, but
there is no automated means of checking them, and it is almost meaningless
to put them in. In the screenshot, the third row of the second listbox is selected
(it appears light gray) but the second listbox doesn’t have the focus. The list-
box on the left-hand side has the focus—its focussed row is dark gray (blue
normally).

The contents of a cell can be a simple

<label>

 or a boxlike tag that holds
arbitrary content. If arbitrary content is used, layout becomes more of a chal-
lenge, and the listbox doesn’t neatly crop its content when resized. This can
cause CSS2 overflow and other messy effects, so simple labels are the safest
kind of content. A multicolumn listbox can have a row with fewer cells than
there are columns, and that will work (including checkboxes), but that use is
not recommended.

If a multicolumn listbox gains a vertical scrollbar, then that scrollbar
does not include the optional header row.

13.2.2 Construction

Figure 13.3 repeats Figure 13.2, but with diagnostic styles turned on.
As before, thin dotted lines are labels, thin black boxes are images, and

thick gray lines are boxes. Smileys are slightly squashed on the left only
because extra border styles have distorted the layout slightly. The right-hand
listbox is quite confusing with all its boxes revealed, but a bit of study reveals

Fig. 13.3 Two listboxes with their internal structure exposed.

AppDevMozilla-13 Page 439 Thursday, December 4, 2003 6:36 PM

440 Listboxes and Trees Chap. 13

that those boxes are very similar to the

<grid>

 boxes discussed in Chapter 2,
XUL Layout. A grid is used as the core of a

<listbox>

’s layout strategy, with

<button>

 tags for column headers and

<label>

 tags for the default cell con-
tent. The column 2 header and the right half of row 3 show that such a label
can be replaced with an arbitrary box of content. The two dark rows (one in
each listbox) show the extent of the highlighting that results from selecting a
row. This highlighting is just a background style applied to something equiva-
lent to the

<grid>

 tag’s <row> subtag.
Figure 13.4 also reveals a box specific to the layout of <listbox>. This is

the gray, thick, dotted line in both of the listboxes displayed. This box sur-
rounds all the list items or rows. This box is used extensively in the implemen-
tation of the <listbox> system. It makes the <listbox> layout system
unique and separate from <grid>.

The <listbox> tag, and its related tags, has XBL definitions stored in
the file listbox.xml in toolkit.jar in the chrome. The Mozilla Platform
has extensive C/C++ support for listboxes as well.

Which listbox tags exist depends on your perspective. The tags an appli-
cation programmer uses are different from the tags used by the platform to
generate the final XUL. Table 13.1 describes all the listbox tags in Mozilla and
their status as of version 1.4.

<listbox> uses the pair <listcols> and <listcol> to identify list
columns, but it uses <listrows> and <listhead> or <listitem> for rows.
The <grid> tags, therefore, do not have exact matches for <listbox>. The
special dotted box noted in Figure 13.3 is the border of the <listboxbody>
tag. It is a key part of Mozilla’s listbox scrolling support.

Table 13.1 Mozilla’s listbox tags

Tag name
Useable

tag? Must use?
Internal use

only?
<grid> Rough
equivalent

<listbox> ✓ ✓ <grid>

<listcols> ✓ <columns>

<listcol> ✓ <column>

<listhead> ✓ <row>

<listheader> ✓ one child of <row>

<listheaditem> ✓ one child of <row>

<listboxbody> ✓

<listrows> ✓ <rows>

<listitem> ✓ ✓ <row>

<listcell> ✓ one child of <row>

AppDevMozilla-13 Page 440 Thursday, December 4, 2003 6:36 PM

13.2 Listboxes 441

Listing 13.1 Basic <listbox> containing three items.
<listbox>
 <listhead>
 <listheader label="Sole Column">
 </listhead>
 <listitem label="first item"/>
 <listitem label="second item"/>
 <listitem label="third item"/>
</listbox>

Listing 13.1 specifies a single-column listbox of three items, with a
header that reads “Sole Column.” No icons or checkboxes are present. It is sim-
ilar to many of the boxes present in the Preferences dialog box; for example, in
the Appearance, Themes panel, or in the Navigator, Languages panel.
Those examples have no header, however.

The XML that Mozilla constructs from this listbox contains many addi-
tional tags, as illustrated in Figure 13.4.

In this fully expanded tag tree, the darker tags match Listing 13.2. The
lighter tags with xul: prefixes are extra content generated by listbox XBL
definitions. This is a complete breakdown of a listbox, except that if there were
two columns, the <xul:listcol>, <xul:listheaditem>, and <xul:list-
cell> tags would appear twice in each tree position, rather than just once.

This tree shows that Listing 13.2 is a specification that uses very con-
densed syntax—many tags in the final listbox are implied rather than stated.
It also shows the similarities and differences between <listbox> and
<grid>. While both have columns and rows, a <listbox> has at most two

Fig. 13.4 DOM Inspector view of three-item <listbox>.

AppDevMozilla-13 Page 441 Thursday, December 4, 2003 6:36 PM

442 Listboxes and Trees Chap. 13

immediate rows, whereas a <grid> can have any number. The items dis-
played in the listbox are nested within the second row, as though that row
were a <vbox>. The first row, which contains the header line, is left out if no
header is specified.

Some basic rules of <listbox> construction follow:

1. For each <listbox>, there should be at most one <listcols> and at
most one <listhead>.

2. For a <listcols>, if it is present, there should be at least one <listcol>
3. For a <listhead>, if it is present, there should be at least one <list-

header>.
4. Items per <listitem> should equal the number of <listcols>, or be

one if no <listcols> exists.
5. Do not ever state <listrows>, <listboxbody>, and <listheaditem>

explicitly. These tags are for internal use only.

This complex construction process has its pitfalls. The main pitfall is that
XUL cannot handle the combination of tags that it in turn generates for
<listbox>. If you create a piece of explicit XUL that matches the tags and
structure shown in Figure 13.5, it will not work as a listbox, and Mozilla will
probably crash. This means that the XML specification of a listbox and its
XML implementation are separate and different.

Mozilla may also crash if you use any of the tags in construction rule 5. It
will crash if you specify any content for the <listcol> tag. It may become con-
fused, do poor layout, or possibly crash if you deviate much at all from the
assumptions that the XUL/XBL processor makes once it sees a <listbox> tag.

Listing 13.2 shows the most extended listbox specification that XUL
supports.

Listing 13.2 Extended <listbox> showing all options.
<listbox>

 <listcols> // tag and content optional
 <listcol/> // can be repeated
 </listcols>

 <listhead> // tag and content optional
 <listheader> // can be repeated
 </listheader>
 </listhead>

 <listitem> // can be repeated
 <listcell> // can be repeated
 </listcell>
 </listitem>

</listbox>

AppDevMozilla-13 Page 442 Thursday, December 4, 2003 6:36 PM

13.2 Listboxes 443

The open and close tags for <listitem>, <listcell>, and <list-
header> can be collapsed into singleton <tag/> tags, and attributes can be
used in place of the removed tag content. These attributes are discussed under
the individual tags. All these tags have XBL definitions in listbox.xml in
toolkit.jar in the chrome.

13.2.3 <listbox>

The <listbox> tag has the following special attributes:

rows size seltype suppressonselect disableKeyNavigation

rows and size dictate the height of the listbox in number of line items.
The size calculation is based on the tallest line item that exists, multiplied by
the value of the attribute. This is the same as setting the minheight attribute
to a fixed number of pixels for each line item. Each line item will be expanded
to the height of the tallest item, and so line items are always equally sized.
The size attribute is deprecated for XUL; use rows instead. A <listbox>
may be dynamically resized by setting the rows attribute from JavaScript.

The rows attribute (and size and minheight) are passed internally to
the <listboxbody> tag for processing, so the space any header row takes up
is not included in the calculations.

The <listbox> tag works poorly with the maxheight attribute. If
<listbox> tags are inside an <hbox>, and sibling tags of the <listbox> have
a maxheight that is less than the <listbox>’s maxheight, then the content
can overflow downward, resulting in messy layout. The recommended approach
when <listbox> has large siblings is to set the <listbox>’s height with
height and avoid setting rows entirely.

The seltype attribute determines if multiple rows of a listbox can be
user-selected. If it is set to multiple, then that is possible. If it is set to any-
thing else, only a single row will be selected. The dynamics of this arrange-
ment are discussed in section 13.2.11.

The suppressonselect attribute can be set to true. When a user
selects an item in a <listbox>, the XBL code for that tag fires a select
DOM event, which can be picked up by an event handler on the <listbox>
tag. This attribute prevents that event from being created.

The disableKeyNavigation attribute can be set to true. This pre-
vents alphabetic keypresses from changing the current selection when the
<listbox> tag has the input focus.

See the “AOM and XPCOM Interfaces” section for a discussion of Java-
Script access to <listbox>. <listbox>’s support for templates is discussed
in Chapter 14, Templates.

13.2.4 <listcols>

The <listcols> tag is a container for <listcol> tags and has no other pur-
pose. It does not have any special attributes and is not displayed. The <list-

AppDevMozilla-13 Page 443 Thursday, December 4, 2003 6:36 PM

444 Listboxes and Trees Chap. 13

cols> tag should appear before all other content inside a <listbox>, if it
appears at all.

If this tag is omitted from a <listbox>, then that is the same as

<listcols>
 <listcol flex="1"/>
</listcols>

This tag is also a possible site for template-based sort attributes.

13.2.5 <listcol>

The <listcol> tag is never displayed and should never have any content.
This tag has no special attributes of its own. In a well-formed <listbox>, the
number of columns is determined by the number of <listcol/> tags.

The <listcol> tag has two other purposes. It can be used to give an id
to the column, and it can control the layout of the column it stands for. This
can be done by adding flex and width attributes or by setting hidden or
collapsed to true.

This tag is a possible site for template sort attributes.

13.2.6 <listhead>

The <listhead> tag is a container tag for <listheader> tags. If <list-
head> is not present, then there will be no header row for the listbox. It has no
special attributes or purpose. This tag wraps all the <listheader> tags in a
single <listheaditem> tag. This ensures that each column header has a box-
like tag.

13.2.7 <listheader>

The <listheader> tag is based on the <button> tag, meaning that it is
itself a <button>. There should be one <listheader> tag per column. From
the XBL definition, if no content is supplied, then this tag is equivalent to

<button>
 <image class="listheader-icon"/>

 <label class="listheader-label"/>
 <image class="listheader-sortdirection"/>
</button>

The first <image> tag can only be set using a style. The <label>’s
value and crop attributes are set from the <listheader>’s label and crop
attributes. The second image is styled into place according to <listheader>’s
only special attribute:

sortDirection

AppDevMozilla-13 Page 444 Thursday, December 4, 2003 6:36 PM

13.2 Listboxes 445

A value of “ascending” yields an up arrow. A value of “descending”
yields a down arrow. A value of “natural” (or anything else) results in no
arrow.

If content is supplied, that content appears inside the displayed button.
This tag is also a possible site for template sorting.

13.2.8 <listitem>

The <listitem> tag is used to specify a row in a <listbox>. Use of any
other tag to specify a row can cause Mozilla to crash. A <listitem> tag with
no user-supplied content is given a single <label> as content. You can alter-
nately specify your own content as one or more child tags of this tag. In that
case, there should be one child tag per column, and <listcell> is the obvi-
ous choice for that content.

<listitem> supports these special-purpose attributes:

label crop flexlabel disabled type checked image selected current
allowevents value

All of these attributes work only for <listbox>es that are single column,
unless otherwise stated.

label, crop, and disabled are passed to the interior <label>. The
value of flexlabel is passed to the <label>’s flex attribute. A row with
disabled set to true can still be selected, but is grayed-out.

The type attribute can be set to checkbox, in which case a checkbox
appears to the left of the row. The position of this checkbox cannot be changed
with dir. disabled set to true will gray out the checkbox and stop the user
from ticking or unticking it.

If the <listitem> has the class listitem-iconic, it can contain an
icon. This icon’s URL can be set with the image attribute.

The remaining attributes apply to both single- and multicolumn list-
boxes.

The current attribute is set internally to true by <listbox> process-
ing during selection. If it is true, that means that the <listitem> is the cur-
rently selected <listbox> item, or the item just selected in the case where
multiple item selection is allowed.

The plain selected attribute is also set to true if this item is selected.
The allowevents attribute, which can be set to true, allows DOM

mouse events to pass through the <listitem> tag and into the content that
makes up the item. Normally, those events are stopped from propagating
when <listitem> receives them. If this attribute is set, then the current row
cannot be selected.

The value attribute states the data value that the <listitem> repre-
sents. This is for programmer use and is not displayed anywhere.

AppDevMozilla-13 Page 445 Thursday, December 4, 2003 6:36 PM

446 Listboxes and Trees Chap. 13

13.2.9 <listcell>

The <listcell> tag is used to specify a single column entry (a cell) for a row
in a <listbox>. Column entries can be specified with a user-defined tag, but
the Mozilla Platform checks for <listcell> in a number of places, so it is the
right thing to use. The default XBL content of a <listcell> is a single
<label>, unless user content is substituted.

The <listcell> tag supports all the attributes that <listitem> sup-
ports, except for current, selected, and allowevents. To add an icon to a
<listcell>, use the class listcell-iconic. If the <listbox> is multicol-
umn, then checkboxes will not work when set on a single <listcell>.

The checkbox, icon, and label in a listbox can be reversed with
dir="rtl". Other box layout attributes like orient can also be applied to
<listcell>, if it makes sense to do so.

That concludes the <listbox> tags.

13.2.10 RDF and Sorting

<listbox> and its related tags can be connected to an RDF document. If this
is done, the content of a <listbox> derives from the content of the RDF docu-
ment. Under such an arrangement, the data in a <listbox> can then be
sorted. See Chapter 14, Templates, for detailed instructions.

13.2.11 User Interactions

Listboxes allow for more user interaction than simple XUL form tags. They
are at least as versatile as menus.

Listboxes support both keyboard and mouse navigation and have accessi-
bility support. Navigation keys include Tab, Arrow, Paging, Home, and End
keys and the spacebar. Mouse support includes clicks, key-click combinations,
and the use of scroll wheels. To use the accessibility support, specify the
<listitem> contents as label attributes or <label> tags.

Listboxes are members of the focus ring for the currently displayed page.
If a <listbox> does not have a currently selected row, then navigating into
the listbox from the last member of the focus ring does not provide any visual
feedback, but the listbox still has the focus.

The selection of listitems is a flexible matter. If only single item selection
is enabled, then selection is much the same as for a menu. If, however, sel-
type is set to multiple, then multiple list items can be picked. With the
mouse, this is done by shift-clicking, to select a contiguous range of items, or
by control-clicking, to pick out individual list items not necessarily next to
each other. A range of items can also be selected with the keyboard, using
shift-arrow combinations. The keyboard cannot be used to pick out multiple
separate list items. Only the mouse can do that.

AppDevMozilla-13 Page 446 Thursday, December 4, 2003 6:36 PM

13.2 Listboxes 447

A single row of a listbox can also be selected by typing a character. The
<listbox> must first have the input focus. The single typed character is
matched against the label attribute of the <listitem> tags in the <list-
box>. If the label starts with the same character, there is a match. This sys-
tem selects one row only and works as follows. The <listitems> are treated
as a circular list of items, like a focus ring. The starting point is either the cur-
rently selected <listitem> or the first <listitem> if no selection yet exists.
The list is scanned until a match for the character is found. This allows the
user to cycle through the list multiple times.

The user cannot resize the columns of a multicolumn listbox, unless the
application programmer enhances the listbox widget with extra event han-
dlers. The same is true of hiding or collapsing columns.

13.2.12 AOM and XPCOM Interfaces

A <listbox> can be used for more than just display; it can be used to manage
the data it contains. The need to insert, update, and delete that data, or to get
and set it, means that robust interfaces are needed from the programming
side.

The XBL definition for the <listbox> tag makes a number of properties
and methods available to the JavaScript programmer. Many of these features
mimic the actions of the DOM 0 and DOM 1 standards. Table 13.2 documents
them. This table is drawn from the version 1.4 XBL binding named listbox.

Table 13.2 Properties and methods of the DOM object for <listbox>

Property or method Description

accessible The XPCOM accessibility interface for <listbox>

listBoxObject The specialized boxObject for <listbox>

disableKeyNavigation Turn alphabetic keyboard input on (true) or off (null)

timedSelect(listitem, millisec delay) Select a single <listitem> with a pause that allows
page layout (scrolling) to keep up, and the selection
to be paced at user speed

selType Same as attribute seltype

selectedIndex Get or set the current selected item, starting from 0;
returns -1 if multiple items selected

value Current value of the sole selected item, or fails if
more than one item is currently selected

currentItem The <listitem> most recently selected

selectedCount The number of <listitem>s selected

appendItem(label, value) Add a <listitem> to the end of the <listbox>

AppDevMozilla-13 Page 447 Thursday, December 4, 2003 6:36 PM

448 Listboxes and Trees Chap. 13

insertItemAt(index, label, value) Add a <listitem> at position index

removeItemAt(index) Remove the row at position index

timedSelect(listitem, millisec delay) Select a single <listitem> with a pause that allows
re-layout (scrolling) to keep up

addItemToSelection(listitem) Add this DOM <listitem> to the currently selected
items (and select it)

removeItemFromSelection(listitem) Deselect this DOM <listitem>

toggleItemSelection(listitem) Reverse the selection state for this <listitem>

selectItem(listitem) Deselect everything and then select this sole
<listitem>

selectItemRange(startItem, endItem) Deselect everything and then select all <listitem>s
including between these two items

selectAll() Select all rows in the <listbox> except the header row

invertSelection() Flip the select state of all rows in the <listbox>

clearSelection() Deselect everything

getNextItem(listitem, offset) Go offset <listitem>s forward from the supplied item
and return the item found

getPreviousItem(listitem,offset) Go offset <listitem>s backward from the supplied
item and return the item found

getIndexOfItem(listitem) Return the index of this <listitem> within the
<listbox>

getItemAtIndex(index) Return the <listitem> at index in the <listbox>

ensureIndexIsVisible(index) Scroll the listbox contents until the <listitem> with
this index is visible

ensureElementIsVisible(listitem) Scroll the listbox contents until this <listitem> is
visible

scrollToIndex(index) Scroll the listbox content to the <listitem> with this
index

getNumberOfVisibleRows() Return the number of items currently visible

getIndexOfFirstVisibleRow() Return the index of the <listitem> that currently
appears at the top of the <listbox>

getRowCount() Return the total number of rows; unreliable at this
publication date

Table 13.2 Properties and methods of the DOM object for <listbox> (Continued)

Property or method Description

AppDevMozilla-13 Page 448 Thursday, December 4, 2003 6:36 PM

13.3 Trees 449

These properties and methods are listed here because <listbox> wid-
gets generally benefit from scripting, and these interfaces are different from
standard Web development experiences. These properties and methods should
be used instead of the DOM 1 Node and Element interfaces, or else the inter-
nals of the <listbox> can become confused. In general, a basic understand-
ing of XBL allows these properties and methods to be read straight out of the
XBL binding for <listbox>. There is nothing new in this table; it is just
reformatted XBL and comments.

One critical feature of this interface is the use of an index argument. This
index refers to any viewable item in this listbox. The viewable items are those
rectangular boxes of content inside the listbox that can be scrolled into view.
The index does not refer to any list of tags in the listbox’s construction. For a
listbox, this difference is trivial, because each visible rectangle of content has
exactly one <listitem> tag. Later we’ll see that a similar index used with
the <tree> tag matches nothing but the rectangles of content displayed.

In Chapters 7, 8, and 10, we noted that the <menupopup>, <scroll-
box>, and <iframe> tags (amongst others) are special kinds of boxlike tags.
They are special because they support additional processing on their box con-
tents. These tags’ DOM objects contain a boxObject property that can yield
up a specialist interface. This specialist interface gives access to that addi-
tional content processing.

<listbox> is another example of such a specialist boxlike tag. It supports
the nsIListBoxObject interface. That interface provides traversal and scroll-
ing operations on the listbox contents. It can also be had from the component

@mozilla.org/layout/xul-boxobject-listbox;1

One of the reasons that Table 13.2 is so big is because most (but not all)
of the features of nsIListBoxObject are exported by the <listbox> XBL
definition. They appear as the bottom third of Table 13.2. In object-oriented
design pattern terms, the <listbox> XBL definition is a façade for this spe-
cial interface.

In fact, most of the methods and properties in Table 13.2 match a pub-
lished XPCOM interface. Interface nsIDOMXULSelectControlElement is
also implemented by menu lists, radio groups, and tab controls. The nsIDOMX-
ULMultiSelectControlElement is only implemented by the object that
XBL creates for <listbox>.

That concludes the discussion of <listbox>. XUL trees, covered next,
can do just about everything the <listbox> tag can do, and more.

13.3 TREES

If the <listbox> tag is a blend of <grid> and <menulist> concepts, then
the <tree> tag is a blend of <listbox> and <iframe>. A <tree> widget is a
vertically arranged, scrollable set of records like <listbox>. <tree> allows a

AppDevMozilla-13 Page 449 Thursday, December 4, 2003 6:36 PM

450 Listboxes and Trees Chap. 13

simple containment hierarchy to be imposed on the displayed rows so that
rows are indented different amounts and decorated with graphical hints.
When this hierarchy is not imposed, <tree> looks much like <listbox>.

<tree> gives the user room to control the display of the records pre-
sented. The user can collapse and expand subparts of the tree interactively.
Columns can be reordered, hidden, and resized, and their contents can be
sorted and selected.

<tree> gives the application programmer many data processing options.
Sort and view features give the programmer direct control over data presentation.
When integrated with overlays or templates, the tree widget provides a highly
dynamic panel in which data can be managed. Trees can be extensively styled.

If whole-of-document widgets like <iframe> are ignored, then <tree> is
the most complex widget that XUL provides.

13.3.1 Visual Appearance

To see a <tree> at work, look at any of these Classic Mozilla windows: The
Preferences dialog (left panel); the Messenger window (two panels); the Man-
age Bookmarks window; the Download Manager. All these windows contain
<tree> tags. In fact, there are dozens of trees used throughout the Mozilla
application.

Figure 13.5 is a tree that shows the features that XUL trees support.
This screenshot uses the Modern skin.

From the diagram, a <tree> appears as a set of columns, much like a
<listbox>. Unlike a <listbox>, there is a dropdown menu under the icon in
the top-right corner. This menu (not shown) is a set of checkboxes that can be
used to hide or redisplay any column.

A <tree> has several kinds of special-purpose columns. Column A in
Figure 13.5 is a primary column. A primary column shows the hierarchical
organization of the rows in the tree. Looking at this column closely, there are
four top-level rows: rows 1, 2, 7, and 9 (so this tree is a “forest” of trees). The
second of these has a subtree that is revealed for display—it is open. The small
downward-pointing triangle (a twisty) also indicates that the subtree row is
open. That subtree has four child rows, and one of those rows has its own sub-

Fig. 13.5 <tree> example showing most features.

AppDevMozilla-13 Page 450 Thursday, December 4, 2003 6:36 PM

13.3 Trees 451

tree, which is also open. Finally, that second subtree has a single child row
that again has a subtree. This final subtree is closed (the twisty icon points
right), so the display doesn’t show how many rows are in that final subtree.
Twisties can be clicked open or closed by the user. The short lines between
twisties and rows just indicate the level of the tree to which the current row
belongs. Finally, the column A cells are indented to match their tree level.

The remaining columns in the diagram are less complex. Column B is an
ordinary column. Column C is an ordinary column whose column header text
has been replaced with an image. Column D is sortable: The column can be
used to force the order of rows in the tree, breaking the normal tree structure.
This sorting is indicated by the small arrow in the column header. Technology
discussed in Chapter 14, Templates, needs to be added to a <tree> before
sorting will work; in Figure 13.5, it is just present for the sake of complete-
ness. Column E is a cycler. Such a column contains a clickable image only and
has a special interaction with the user. Column F holds a <progressmeter>
tag. Column G is designed to hold a checkbox, but that functionality is not fin-
ished and does not work in versions 1.4 and less.

The parentheses in the column names are not specially constructed; they
are just part of the column name text. The scrollbars on the right of the tree
appear and disappear as required, based on the amount of tree content. The
scrollbar in Figure 13.6 is part of the <tree> tag, not some other part of the
chrome window. Trees do not support horizontal scrollbars.

Figure 13.5 can also be examined row by row. The first interesting row is
row 3. One cell of that row has an alternate background color and a border.
Mozilla has a special styling system for trees, which is described under “Style
Options” in this chapter. Row 6 is the currently selected row so the tree has
the input focus. Row 7 shows that cell contents can have an image prepended
to the cell content; this is not a list-style-image style. Row 7 also shows
how an image replaces all the cell content in a cycler column and how a
progress-meter column’s cell content can be overridden with ordinary content.
Row 8 (a single horizontal line) is a <treeseparator>; it acts as <menusep-
arator> does for menus. Row 9 shows that cell content is cropped if there
isn’t room to display it. If very little space is available in the cell, then not even
ellipses will be displayed. Finally, the last row is completely empty. This is
probably a bad idea in a real application, but it is technically possible.

A tree cell cannot contain arbitrary XUL content. It can only contain a
line of text and the few variations noted previously. It cannot contain a <box>.

13.3.2 Construction

Figure 13.6 repeats Figure 13.5 with diagnostic styles turned on.
Little of the tree’s internal structure is revealed with these styles. Only

the column heading bears some resemblance to other widgets like buttons and
labels. Obviously, <tree> is not based on a gridlike structure and is very dif-
ferent from <listbox>. Something unusual is going on.

AppDevMozilla-13 Page 451 Thursday, December 4, 2003 6:36 PM

452 Listboxes and Trees Chap. 13

In fact, the content area of a <tree> is a little like an <iframe>. It is a
rectangular area in the XUL document whose content is stored separate from
the rest. In an <iframe>, the <iframe> content comes from a separate XUL
document. In the <tree> case, the <tree> content has no separate XUL doc-
ument, but it is still held apart from the other content.

It is not possible to style part of a tree using normal CSS2 styles. A spe-
cial style system exists instead. The reason is that the individual cells and
rows of a tree have frames that are not fully exposed to the styling system.
This just happens to be the way <tree> is designed and implemented.

Figures 13.5 and 13.6 require over a hundred lines of XUL, so Figure
13.7 shows a simpler example with just two rows.

This tree is constructed in a XUL document as for all XUL content. The
content fragment required for this tree is shown in Listing 13.3.

Listing 13.3 Basic construction of <tree> content.
<tree flex="1">
 <treecols>
 <treecol flex="1" id="A" label="primary" primary="true"/>
 <treecol flex="1" id="B" label="normal"/>
 <treecol flex="1" id="C" label="icon" class="treecol-image"

src="face.png"/>
 <treecol flex="1" id="D" label="sorted" sortDirection="ascending"/>
 <treecol flex="1" id="E" label="cycler" cycler="true"/>
 <treecol flex="1" id="F" label="progressmeter" type="progressmeter"/>
 </treecols>

Fig. 13.6 <tree> example with diagnostic styles.

Fig. 13.7 Simple two-row <tree> example.

AppDevMozilla-13 Page 452 Thursday, December 4, 2003 6:36 PM

13.3 Trees 453

 <treechildren id="topchildren" flex="1">
 <treeitem container="true" open="true">

 <treerow>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell" mode="undetermined"/>
 </treerow>

 <treechildren>
 <treeitem>
 <treerow>
 <treecell label="Cell"/>
 <treecell src="face.png" label="Cell"/>
 <treecell label="Cell"/>
 <treecell label="Cell"/>
 <treecell src="face.png" label="Cell"/>
 <treecell label="Cell" mode="normal" value="40"/>
 </treerow>
 </treeitem>
 </treechildren>

 </treeitem>
 </treechildren>
</tree>

The <tree> tag has a <treecols> child, in which the columns are
defined, and a <treechildren> child. Column ids are very important for
trees. The top-level <treechildren> tag is a little like <listbox>’s <list-
boxbody>, except that it is specified by the application programmer and can
be nested inside other tags. A tree “item” is a whole subtree of the tree; there-
fore, a list item appears as a series of rows. This example code has a single top-
level <treeitem> tree item. The container attribute says that this item is not
just a row but also the top of the subtree. open says that the next level of the
subtree is visible. If a second or third top-level <treeitem> were to appear, it
would appear after the bottom </treeitem> tag. The sole top-level tree item
has two parts: the row content and the subtree children. That is all it can hold.
The subtree started with the second <treechildren> tag also has a single
tree item, but this time it is not a subtree, it is just a row. If it were to have a
second tree item, that would appear after the inner </treeitem> tag.

XBL definitions for <tree> are stored in tree.xml in toolkit.jar in
the chrome.

There are other structural aspects to trees: RDF, sorts, views, builders,
and templates. An overview of each is provided after the XUL tree tags are
explained.

AppDevMozilla-13 Page 453 Thursday, December 4, 2003 6:36 PM

454 Listboxes and Trees Chap. 13

13.3.3 <tree>

The <tree> tag surrounds all of a tree’s content. More than one tree can be
specified in a given XUL document. The <tree> tag has the following special
attributes:

seltype hidecolumnpicker enableColumnDrag disableKeyNavigation

☞ seltype set to multiple (the default) allows the user to select multiple
items at once in the tree. Set to single, only one item at a time can be
selected.

☞ hidecolumnpicker set to true collapses the <treecolpicker> tag in
the top right corner of the tree.

☞ enableColumnDrag set to true allows a user to reshuffle the order of
columns.

☞ disableKeyNavigation set to true prevents the user from selecting
rows using alphabetic keystrokes.

The <tree> tag and many of the other <tree>-like tags also support
RDF and templates. The attributes relevant to those features are discussed in
Chapter 14, Templates.

A maximum display height for <tree> can be set with the standard box
layout attribute height. <tree> does not support a rows attribute.

13.3.4 <treecols>

The <treecols> tag encloses the column definitions for a tree. This tag has
no special attributes. It might be assigned an id if the tree is partially built
from overlays. The <treecols> tag is a simple container tag. This tag must
be the first child tag inside <tree>. It is not optional.

<treecols> can contain two types of tag: <treecol> and <splitter>.
The number of <treecol>s inside a <treecols> tag gives the number

of columns in the tree. At least one <treecol> tag must be present. At most,
one <treeecol> tag per tree can have primary="true" set.

A splitter represents a drag point that can be moved by the user. If a
<splitter> tag is specified, it must appear between two <treecol> tags. If
all possible <splitter> tags are supplied, <treecol> and <splitter> tags
must alternate across the tree header. The net result of such a drag is that the
columns on either side of the splitter are resized. The XBL definition for
<tree> includes logic that supports such <splitter> tags and drag gestures.

Any <splitter> tags in a tree should be styled with class="tree-
splitter" so that the tags have zero width. If this is not done, the column
headings and columns may not line up. Because of the way Mozilla identifies
the current tag under the mouse cursor, the <splitter> tag can be the cur-
rent tag even when it has no visible area. It can still be dragged when of zero
size.

AppDevMozilla-13 Page 454 Thursday, December 4, 2003 6:36 PM

13.3 Trees 455

13.3.5 <treecol>

The <treecol> tag defines a single column of a tree. It cannot contain any
tags. Each <treecol> tag must have a unique id. This id is used internally by
the Mozilla Platform. The column header for the tree is a <button> contain-
ing a <label> and an <image>, or just an <image> for a column header with
the treecol-image class. Column headings can be styled with list-style-
image if an additional image is required.

The attributes with special meaning to <treecol> are

label display crop src hideheader ignorecolumnpicker fixed
sortDirection sortActive sortSeparators cycler primary
properties

☞ label specifies the text to appear in the column header for that column.
A <label> tag cannot be used as content.

☞ display specifies the text to appear in the column picker for that col-
umn.

☞ crop applies to the <label> content of the column.
☞ src replaces the column label with an image. The style class="tree-

col-image" must also be applied to the <treecol> if this is to work.
☞ hideheader="true" removes the button-like appearance of the column

header. The space for the header still exists—the header is neither col-
lapsed nor hidden. If this attribute is used, the label for the column
should be removed as well. This attribute can be used on all headers and,
when coordinated with the hidecolumnpicker attribute, can com-
pletely collapse the column header area.

☞ ignorecolumnpicker="true" prevents the dropdown menu from hid-
ing or showing this column.

☞ fixed="true" prevents this column from feeling the effects of dragging
any splitter next to it. In other words, this specific column cannot be
resized unless the whole tree is resized. This is a consequence of the
<splitter> tags in the tree header.

☞ If sortActive="true", then this column is sorted. sortDirection
can be set to ascending, descending, or normal. If sortSeparators
is set to true, then special sorting occurs that keeps rows between the
<treeseparator> tags that they started between. Sorting only occurs
automatically when RDF and templates are used—see Chapter 14, Tem-
plates.

☞ cycler="true" means that this column is a cycler column and will con-
tain only an icon. That icon can be made button-like by adding onclick
handlers. If a cycler column is clicked, the row under the mouse pointer
is not selected.

AppDevMozilla-13 Page 455 Thursday, December 4, 2003 6:36 PM

456 Listboxes and Trees Chap. 13

☞ primary="true" means that this column id is the primary column for
the tree and should show a hierarchical view of the tree items. This
attribute can only be applied to one <treecol> tag per tree.

☞ The properties attribute supports Mozilla’s special tree styling sys-
tem. See “Style Options” in this chapter.

A column can be hidden or collapsed using standard XUL attributes.

13.3.6 <treechildren>

The <treechildren> tag is both the ultimate container tag for all of a tree’s
rows and the container tag for each subtree in the tree. It has no special
attributes.

The <treechildren> tag can contain only <treeitem> and <tree-
separator> tags.

This tag has two uses. A <tree> tags second child must be a <tree-
children> tag. A <treeitem>’s optional second child tag can only be a
<treechildren> tag. If used in the second way, then the <treechildren>
tag should always have at least one <treeitem> content tag. If it does not,
the twisty icon for that subtree will act strangely.

The <treechildren> tag is the tag used for style rules that exploit
Mozilla’s special tree styling system.

13.3.7 <treeitem>

The <treeitem> tag represents one horizontal item in a tree. An item is
one of

1. A single row of cells without any subtree.
2. A single row of cells with a subtree that is displayed.
3. A single row of cells with a subtree that is hidden.

This tag can contain either a <treerow> tag (case 1) or a <treerow> tag
followed by a <treechildren> tag (cases 2 and 3). <treeitem> cannot con-
tain multiple <treerow> or <treechildren> tags.

The attributes with special meaning to <treeitem> are

container open properties

If container is set to true, then the item has a subtree and should con-
tain a <treechildren> tag as its second content tag. If open is set to true,
then the items’ subtree is displayed (case 2). By default, neither attribute is
set. properties is used by the style system that is described under “Style
Options.”

The <treeitem> tag also supports template-related attributes such as
uri. See Chapter 14, Templates, for more on that.

AppDevMozilla-13 Page 456 Thursday, December 4, 2003 6:36 PM

13.3 Trees 457

13.3.8 <treeseparator>

The <treeseparator> tag draws a horizontal line across the tree. It can con-
trol sort behavior, as described in Chapter 14, Templates. This horizontal line
is not indented, so <treeseparator> is only useful as a substitute for a top-
level <treeitem> tag. It has one special attribute:

properties

This is used by the special style system described under “Style Options.”
<treeseparator> is meant to be a visual cue only.

13.3.9 <treerow>

The <treerow> tag holds the contents of a single row in the tree. It can con-
tain only <treecell> tags. There should be <treecell> content tags equal
to the number of columns. Specifying fewer <treecell> tags is also possible,
but it is not very meaningful and is not recommended. Doing so reduces the
number of cells visible in that row. The only attribute special to treerow is

properties

This attribute has the same use as it does for <treeitem>.

13.3.10 <treecell>

The <treecell> tag is responsible for the content of a single cell in a tree. In
a primary column, it is not responsible for the indentation, twisty, or any con-
necting lines.

<treecell> cannot have any content, except for the special case of the
column that holds <progressmeter> content. In that case, a single <pro-
gressmeter> tag is automatically added. <treecell> cannot contain a
<label> tag.

The attributes with special meaning to <treecell> are

label src value mode allowevents properties

☞ label sets the displayed content for the cell. Text content cannot wrap
lines as <label> can.

☞ src can be used to prepend an image to the content of the cell.
☞ mode can be set to normal or undetermined, provided the matching col-

umn has type="progressmeter". It provides the mode attribute for a
<progressmeter> tag.

☞ value is the percent value of any mode="normal" progress meter that
is present.

☞ If allowevents="true", then clicks that would normally select the row
go through to the cell for handling. The row is not selected in this case.

☞ properties is used by the system described in “Style Options.”

AppDevMozilla-13 Page 457 Thursday, December 4, 2003 6:36 PM

458 Listboxes and Trees Chap. 13

<treecell> also supports RDF template attributes like resource and
ref. See Chapter 14, Templates, for these.

13.3.11 <treerows> and <treecolpicker>

These tags are used only inside XBL definitions. They are used automatically to
construct the contents of the <tree> tag. <treerows> holds all the rows of the
tree. It plays the same role for <tree> that <listboxbody> plays for <list-
box>. <treecolpicker> holds the image and dropdown menu for the column
picker. The dropdown menu is generated dynamically when the tree is first cre-
ated. <treecolpicker> has an ordinal attribute that is set to a very high
number. This ensures that it always appears to the right of the tree columns.

The <treecolpicker> tag can be styled as for any XUL tag. Its icon has
class tree-columnpicker-icon.

There is no need to use these tags directly in a XUL document. The XBL
code that implements <treecolpicker> is a useful guide for applications
needing a similarly dynamic widget.

13.3.12 Nontags

<tree> was once called <outliner>, but no longer. The <outliner> tag does
not exist any more. When <tree> was called <outliner>, <listbox> was
called <tree>, but that <tree> was different from the contemporary <tree>
tag. Beware of these ancient names in very old documentation that sometimes
appears on the Mozilla Web site, in newsgroups, or in the bug database.

The <treecolgroup> tag is an old name for <treecols>. It lingers in a
few Mozilla chrome files but should never be used. Use <treecols> instead.

The <treecolpicker> tag is part of the XBL definition for <tree>. It is
meant for internal use only and shouldn’t be specified in a XUL document.

The <treeindentation> and <treeicon> tags have no meaning as
XUL tags. The <treehead>, <treecaption>, <treefoot>, and <tree-
body> tags have no meaning as XUL tags. All these tags are old and experi-
mental at best. They are not supported.

13.3.13 RDF and Sorting

As for <listbox>, <tree> and its related tags can be connected to an RDF
document. If this is done, the content of a <tree> derives from the content of
the RDF document. Under such an arrangement, the data in a <tree> can
then be sorted. See Chapter 14, Templates, for more detailed instructions.

13.3.14 User Interactions

Trees have all the user interactivity options that listboxes have, and more.
The most important user interactions that XUL trees support are more

AppDevMozilla-13 Page 458 Thursday, December 4, 2003 6:36 PM

13.3 Trees 459

about application semantics than they are about keystrokes or mouse ges-
tures. When a tree displays hierarchical structure, it allows the user to partic-
ipate in drill-down, summarizing, and classification actions. These tasks
should be properly supported. Drilling down bears some further thought.

When the user clicks a twisty to reveal a subtree, that is a drill-down
action. In such an action, the user is asking for more detail on a given subject.
Data displayed in a hierarchy should always support this kind of exploration
with data that is an answer to the user’s request. The rows exposed should not
be irrelevant: They must be about the parent row.

Studies have shown that users cannot handle drilling down many lev-
els—they get lost and it is inefficient navigation. It is better to have a wide,
shallow tree that scrolls a lot, than a very structured and deep tree whose sub-
trees easily fit the window.

The lower-level interactions that trees support closely match those of the
listbox and are noted as follows.

Trees support keyboard and mouse navigation and have accessibility
support. Navigation keys include the Tab, Arrow, Paging, Home, and End keys,
and the spacebar. Mouse support includes clicks, key-click combinations, and
the use of scroll wheels. Accessibility follows automatically because <tree-
cell> tags always require labels.

Trees are members of the focus ring for the currently displayed page. If a
<tree> does not have a currently selected row, then navigating into the tree
from the previous member of the focus ring does not provide any visual feed-
back, but the tree still has the input focus. This behavior may be improved after
version 1.4, using a workaround in Classic Mail & News that relies on styles.

The selection of tree items is a flexible matter. If only single-item selec-
tion is enabled, then selection is much the same as for a menu. If, however,
seltype is set to multiple, then multiple list items can be picked. With the
mouse, this is done by shift-clicking, to select a contiguous range of items, or
by control-clicking, to pick out individual list items not necessarily next to
each other. A range of items can also be selected with the keyboard, using
shift-arrow combinations. The keyboard cannot be used to pick out multiple
separate list items. Only the mouse can do that. If a <treeitem> that con-
tains a subtree is selected, then only the row at the root of the subtree is
selected, even if the subtree is collapsed.

A single row of a tree can be selected by typing a character, as for <list-
box>. The <tree> must first have the input focus. The single typed character
is matched against the label attribute of the <treeitem> tags in the
<tree>. If the label starts with the same character, there is a match. This sys-
tem selects one row only and works as follows. The <treeitem>s are treated
as a circular list of items, like a focus ring. The starting point is either the cur-
rently selected <treeitem>, or the first <treeitem> if no selection yet exists.
The tree is scanned until a match for the character is found. This allows the
user to cycle through the tree multiple times.

AppDevMozilla-13 Page 459 Thursday, December 4, 2003 6:36 PM

460 Listboxes and Trees Chap. 13

If enableColumnDrag is set, then tree columns can be reordered using a
mouse gesture. Just drag the column header across the face of the tree. The
column picker icon cannot be moved.

If <splitter> tags are used between <treecol> tags, then these split-
ters can be used to resize the columns with a drag gesture on the splitter tag.
The column picker icon cannot be resized.

The column picker, if it is not disabled or ignored, can be used to hide or
show any of the columns of a tree. Hidden columns are persistent across
Mozilla application sessions if persist="hidden" is set.

Finally, sorting is implemented with a simple mouse click on a column
header.

13.3.15 AOM and XPCOM Interfaces

The scriptable features of XUL trees are quite complex. This topic provides a
concept overview of these features and a detailed look at the interfaces that
apply to simple trees. A simple tree is a tree that doesn’t involve RDF or tem-
plates. All the examples of trees in this chapter are simple trees. More complex
trees are covered in Chapter 14, Templates.

<tree> is an example of a specialist boxlike tag, just like <listbox>,
<iframe>, and <scrollbox>. <tree> is a boxlike tag and so the DOM object
for <tree> has a boxObject property. That property supports a tree-specific
interface. That interface provides scrolling, navigation, selection, and data
extraction methods for the tree content. Like <listbox>, the XBL definition
for <tree> makes this special interface immediately available. This interface
can also be had from the component and interface:

@mozilla.org/layout/xul-boxobject-tree;1 nsITreeBoxObject

This interface is similar in many ways to the nsIListBoxObject inter-
face. Unlike the <listbox> tag, few of the features of this interface are
exported to the <tree> tag’s XBL binding. That means you must work on the
nsITreeBoxObject object directly. That object is exposed as the treeBoxOb-
ject property of the <tree> tag’s DOM object.

Table 13.3 shows the precise control that this interface gives over the
screen area taken up by the tree.

Table 13.3 Properties and methods of the nsITreeBoxObject interface

Property or method Description

view Any nsITreeView view associated with the tree

focussed True if the <tree> has the focus

treeBody The <treebody>’s DOM element

AppDevMozilla-13 Page 460 Thursday, December 4, 2003 6:36 PM

13.3 Trees 461

selection An nsITreeSelection object that understands which rows
are currently selected

rowHeight The height in pixels of a row (all rows are the same
height)

getColumnIndex(id) The ordinal number of the column with id=“id”

getColumnId(index) The id of the column with ordinal number index

getKeyColumnIndex() The ordinal number of the primary column

getFirstVisibleRow() The row index of the topmost visible row

getLastVisibleRow() The row index of the bottommost visible row

getPageCount() Total rows divided by the number of rows that fit the tree
area; equals the number of pages of displayable rows

ensureRowIsVisible(index) Scroll the tree content until the index’th row is visible

scrollToRow(index) Scroll the tree content until the index’th row is at the top

scrollByLines(count) Scroll down (>0) or up (<0) count lines; stop scrolling as
soon as there is no more to scroll

scrollByPages(count) Scroll down (>0) or up (<0) count number of pages; a
page is the number of rows that fit inside the tree’s area

invalidate()
invalidateColumn(id)
invalidateRow(index)
invalidateCell(index, id)
invalidatePrimaryCell(index)
invalidateRange(index1, index2)
invalidateScrollbar()

Tell Mozilla to redisplay (repaint) the stated part of the
tree; index is a row index; id is a column id

getRowAt(x,y) Return the index of the row under the given relative (x,y)
coordinates, or return -1

getCellAt(x,y,r,c,type) Return the row index, column id, and type of the cell at
relative (x,y) coordinates; r, c, and type must be empty
objects: {}; each object gains a value property that con-
tains the returned data

getCoordsForCellItem(index, id,
type, x, y, w, h)

Return the x-, y-, width-, and height- layout for the ele-
ment with type held in the index’th row in column id;
type may be “cell,” “twisty,” or “image.” x, y, width, and
height must be empty objects: {}; each object receives a
value property

isCellCropped(index, id) Return true if the index’th row in column id

Table 13.3 Properties and methods of the nsITreeBoxObject interface (Continued)

Property or method Description

AppDevMozilla-13 Page 461 Thursday, December 4, 2003 6:36 PM

462 Listboxes and Trees Chap. 13

XUL trees also have very flexible implementation options. Not only are
there familiar interfaces, but there are some important design concepts to
understand as well.

XUL trees are built around the design pattern called Model-View Con-
troller but use different terms for each of these things. To recap, in this design
pattern, the Model holds the data; the View displays the data; and the Con-
troller coordinates the other two based on input from the outside world.

A XUL tree implements this design pattern with a graphical widget,
seminal data, a builder, and a Mozilla view. A Mozilla view is a piece of code
that provides an arrangement of the seminal data that is suitable for display.
In MVC terms, the seminal data, assisted by the Mozilla view, makes up the
MVC model, not the MVC view. The widget is part of the MVC view, which is
completed by the builder. The builder can take the role of MVC controller as
well. There is only one tree widget; it is shown in Figure 13.6. When construct-
ing a tree, an application programmer has choices in each of the other three
areas: the builder, the Mozilla view, and the seminal data.

Some of these new tree concepts require templates. In the following dis-
cussion, the parenthetical remark (Chapter 14, Templates) means that con-
cept is discussed in detail in the next chapter.

13.3.15.1 Seminal Data Seminal data are the data that the content of a tree
comes from. Seminal data is not a technical term; it is just a descriptive term
that avoids reusing other technical terms. The <tree> tag is always required
for a XUL tree, but the data that make up the tree items, rows, and cells can
come from one of three places: XUL, JavaScript, or RDF.

Listing 13.4 is an example of tree data specified in XUL. The content of
the tree is stated literally and directly in the document containing the <tree>
tag. This is a straightforward way to specify tree content. Even if overlays are
used to contribute content from other documents, this is still a pure XUL solu-
tion.

Tree content can also be specified directly in JavaScript. There are two
ways to do this. The first way is to use the DOM 1 interfaces to create DOM 1

rowCountChanged(index, total) Rows equal to total starting from the row at index have
changed, so redisplay

beginBatchUpdate() Tell the tree to stop re-laying out and repainting the tree
after every little change

endUpdateBatch() Tell the tree to catch up on changes that require layout
or repainting

clearStyleAndImageCache() Remove all style information in the tree in preparation
for a theme change

Table 13.3 Properties and methods of the nsITreeBoxObject interface (Continued)

Property or method Description

AppDevMozilla-13 Page 462 Thursday, December 4, 2003 6:36 PM

13.3 Trees 463

Element objects with calls to document.createElement(). By modifying
the DOM tree, plain XUL-based trees can be dynamically added to. This is no
different from any other use of the DOM. Listing 13.4 is an example of adding
a row to the tree in Listing 13.3. This is routine DOM 1 manipulation, with the
new tags being created and added bottom-up.

Listing 13.4 DOM manipulation of a XUL tree.
var doc = document;
var tree = doc.getElementById("topchildren");
var item = doc.createElement("treeitem");
var row = doc.createElement("treerow");

for (var i=1; i!=7; i++) // there are six columns
{
 var cell = doc.createElement("treecell");
 cell.setAttribute("label","NewCell"+i);
 row.appendChild(cell);
}
item.appendChild(row);
tree.appendChild(item); // item, row and cells now appear

The other way to use JavaScript as seminal data for a tree is to create a
custom view. Views are described shortly, but to look ahead, a set of JavaScript
methods can be used to serve up all the tree’s content.

Finally, seminal data can come from an RDF document. This is achieved
using XUL templates and a little ordinary XUL content (Chapter 14, Tem-
plates).

13.3.15.2 Builders Builders are a somewhat confusing topic in XUL, mostly
because they are obvious only when trees are used. When used with a tree,
special cases distract from the core reason that builders exist. We first con-
sider what a builder is in the ordinary case.

Any XUL tag starts life as a simple textual string. If it is a visual tag,
like <button>, it must end up as pixels on a display. The Gecko styling, lay-
out, and rendering engine inside Mozilla is responsible for that transforma-
tion. If the tag is relatively simple, like <box>, then the tag’s information
might be sent directly to that engine.

There are only a few simple XUL tags. <button>, for example, can end
up as a collection of tags that might include <label> and <image>. The XBL
definition for <button> generates these tags and sends the results to the dis-
play engine. So XBL processing is an extra preparatory step before the display
engine gets something to work with.

Some XUL tags require preparation beyond what XBL can provide.
<menulist> is an example. Some part of the platform must construct and
destroy the popup menu of a <menulist> when it is used. XBL does not do
that work. A piece of functionality that is built into the platform must do it.

AppDevMozilla-13 Page 463 Thursday, December 4, 2003 6:36 PM

464 Listboxes and Trees Chap. 13

Such a piece of functionality is called a builder, merely because it assembles
and disassembles content that is to be displayed (or undisplayed).

Every XUL tag has a builder, at least conceptually, but in most cases the
builder is trivial. In nearly all cases, the builder is invisible to applications
and runs automatically. Only the most complex tags might have a builder
sophisticated enough to be exposed to applications. <listbox> has a sophisti-
cated builder, but it is invisible. Only <tree> and <template> tags have visi-
ble builders, but even those builders are visible only part of the time. Mozilla
contains two different tree builders.

The XUL content builder, or default tree builder, is used to construct
plain XUL trees and trees constructed via the DOM. No programming effort is
required to use this builder. This builder creates a tree using a batch process,
and the whole tree is created in one step. If DOM operations change the con-
tent of a plain XUL tree, the builder is not involved. Instead, the pieces of the
already built tree are intelligent enough to absorb those changes directly.

This tree builder is an invisible builder. It has no XPCOM component or
interface. It is not scriptable. It is given a name merely to separate it from the
template builder, which does have some visibility. The content builder, or
default tree builder is the bit of Mozilla that acts like a builder, when no spe-
cialist builder is present.

The XUL template builder (Chapter 14, Templates) is used to construct
all template-driven content, including templated trees. It is chosen automati-
cally when templates are used. It has a specialized version specifically for
building trees, called the tree builder. The tree builder should really have a
more descriptive name, like builder-for-special-combination-of-template-and-
tree. The tree builder can construct a tree “lazily,” which means that parts of
the tree are left unbuilt (and undisplayed) until needed later on. The tree
builder can also be accessed and controlled by the application programmer. To
do its job, that builder may use the content builder. Alternately, it may do part
of the building work itself and rely on a separate object for the rest of the
work.

This builder also supports application-programmer-specified observers,
which further assists the building work. It has a scriptable component:

@mozilla.org/xul/xul-tree-builder;1

The builder interfaces (Chapter 14, Templates) on this object are

nsIXULTemplateBuilder nsIXULTreeBuilder

The second interface is part of the customization process. If a builder exists for
a given tree, then the builder property on the tree’s DOM Element will contain
that builder.

13.3.15.3 Views A builder might do all the work required to create a tree out
of seminal data. Or, it could hand part of the work to a subcontractor who spe-
cializes in making the data ready to use. The builder would then be free to

AppDevMozilla-13 Page 464 Thursday, December 4, 2003 6:36 PM

13.3 Trees 465

spend most of its energy overseeing the process. Such a specialist subcontrac-
tor is in this case called a view. It provides a view of the seminal data, not a
view of the graphical (GUI) result. In object-oriented terms, this approach is
called delegation. Without the view, the builder is incomplete and can’t do any
work. Without the builder, the view is ready to use, but has no boss telling it
where to do work.

A view is used by a builder, but it can also be used by an application pro-
grammer. In some cases, the view can also be created by a programmer. In all
cases, the view created must have these interfaces:

nsITreeView nsITreeContentView

Table 13.4 shows the properties that the XBL definition of <tree> cre-
ates to support views.

If a view is replaced with another, in theory all these properties should be
updated. In practice, it is enough to update the treeBoxObject.view prop-
erty or the view property and avoid using the other properties afterwards.
Table 13.5 shows the interface that such a view provides.

Table 13.4 JavaScript <tree> properties that are the result of views

Property name
Related to other
properties? Contents

treeBoxObject.view Yes View object exposing nsITreeView

view Yes View object exposing nsITreeView

contentView Yes View object exposing nsITreeContentView

builderView Yes View object exposing nsIXULTreeBuilder

Table 13.5 Properties and methods of TreeView interfaces

Property or method

Useable in
XUL content
builder? Description

nsITreeContentView

root Points to the <tree> tag’s DOM object

getItemAtIndex(index) ✓ Returns the <treerow> at the index’th
visible row in the tree; rows count if they
can be scrolled into view, but not if they
require a hidden subtree to be revealed;
counts from 0

getIndexOfItem(treerow) ✓ Returns the index position of the <treerow>
in the tree

AppDevMozilla-13 Page 465 Thursday, December 4, 2003 6:36 PM

466 Listboxes and Trees Chap. 13

nsITreeView

canDropBeforeAfter(index) ✓ True if a dropped item can be inserted
before or after this row

canDropOn(index) ✓ True if the given row can be a drop site for a
drag-drop operation

cycleCell(index, id) Fires when a cell (in row index, column id)
in a cycle=“true” column is clicked

cycleHeader(id, element) Fires when the element tag in the column
with this id is clicked

drop(index, where) Fires when a dragged row is dropped; index
is the row, where indicates the drop target
and is 0, 1, or 2

getCellProperties(index,
column_index, array)

✓ Fills the nsISupportsAarray with the
values found in the cell’s properties XML
attribute and returns the array

getCellText(index, id) ✓ Returns the label= value in the cell at row
index and column id

getCellValue(index, id) ✓ Returns the value= value in the cell at row
index and column id

getColumnProperties(index,
column-id, array)

✓ Fills the nsISupportsAarray with the
values found in the column’s properties
XML attribute

getImageSrc(index, id) ✓ Returns the URL for any image prefixed to
the cell with row index and column id

getLevel(index) ✓ Returns the depth of this row in the tree

getParentIndex(index) ✓ Returns this row’s parent row index, or -1 if
there is no parent

getProgressMode(index,id) ✓ Returns the type of <progressmeter> in the
cell with row index and column id (returns
1, 2, or 3)

getRowProperties(index,
array)

✓ Fills the nsISupportsAarray with the
values found in the row’s properties XML
attribute and returns the array

hasNextSibling(index,
start_index)

✓ True if the first sibling of this row after
start_index

isContainer(index) ✓ True if the row has container=“true” (has a
subtree of zero or more elements)

Table 13.5 Properties and methods of TreeView interfaces (Continued)

Property or method

Useable in
XUL content
builder? Description

AppDevMozilla-13 Page 466 Thursday, December 4, 2003 6:36 PM

13.3 Trees 467

Mozilla has half a dozen existing views written in C/C++, and about a
dozen views written in JavaScript. One specific view belongs to the XUL con-
tent builder. It is called simply the “tree content view” and is the view that
gives access to trees based on plain XUL content. This simple view is not a full
XPCOM component; it is just a subpart of the XUL content builder. It does,
however, support the preceding interfaces properly.

When the XUL content builder builds a tree, an object with this interface
is attached to the view property of the <tree>’s DOM object. This view is
available to the application programmer. It is used by the XUL content builder
during tree construction, and it can be used by the application programmer
after the tree is displayed.

There is one restriction to use of this view. It is a read-only system. The
isEditable() view method reports back false, which means that the set-

isContainerEmpty(index) ✓ True if the row has container=“true” and
zero child nodes of <treechildren>

isContainerOpen(index) ✓ True if the row has open=“true” and con-
tainer=“true”

isEditable(index, id) Always false Returns true if the cell at row index and col-
umn id is editable

isSeparator(index) ✓ True if the row is a <treeseparator>

isSorted() Always false True if any column in the row is sorted

performAction(command)
performActionOnRow(com-
mand, index)
performActionOnCell(com-
mand, index, column id)

Send the given command to the whole tree,
to the row alone, or to a single cell

rowCount ✓ Reports the total rows in the tree

selection ✓ Returns an nsITreeSelection object contain-
ing details of the current selection

selectionChanged() Fires when the selected row(s) in the tree
changes

setCellText(index, id, value) Sets the cell text at row index and column
id to value

setTree(nsITreeBoxObject) Used during initialization—avoid

toggleOpenState(index) ✓ Fires when a subtree container is opened or
closed; can be called direct

Table 13.5 Properties and methods of TreeView interfaces (Continued)

Property or method

Useable in
XUL content
builder? Description

AppDevMozilla-13 Page 467 Thursday, December 4, 2003 6:36 PM

468 Listboxes and Trees Chap. 13

CellText() view method does nothing. The methods that “fire” can only be
called internally by the tree system, not by the application programmer. Also,
because of the way this system is hooked up to the tree, the methods of this
interface can’t be replaced with user-defined ones. All that can be done with
this view interface is extract information about the tree.

If a view is to be read-write, or if a view is to be created by the application
programmer, then the tree must be the base tag of a template (Chapter 14,
Templates).

In addition to the tree content view, many application-specific XPCOM
components have nsITreeView interfaces and can be used as ready-to-go
views. They, however, are highly specific components. Using these components
requires extensive study of existing applications such as the Messenger. At
version 1.4, the components with tree views are

@mozilla.org/addressbook/abview;1
@mozilla.org/filepicker/fileview;1
@mozilla.org/inspector/dom-view;1
@mozilla.org/messenger/msgdbview;1?type=quicksearch
@mozilla.org/messenger/msgdbview;1?type=search
@mozilla.org/messenger/msgdbview;1?type=threaded
@mozilla.org/messenger/msgdbview;1?type=threadswithunread
@mozilla.org/messenger/msgdbview;1?type=watchedthreadswithunread
@mozilla.org/messenger/server;1?type=nntp
@mozilla.org/network/proxy_autoconfig;1
@mozilla.org/xul/xul-tree-builder;1

To use any of these components except for the last (the default), it is rec-
ommended that their existing uses within the chrome files be studied carefully
first.

The Classic Mozilla chrome also contains many pure JavaScript imple-
mentations of nsITreeView, whose implementation can be casually studied.
The Navigator View | Page Info functionality has five views (in pageInfo.js in
comm.jar in the chrome) and is the easiest to understand—see also page-
Info.xul. The DOM Inspector has two (in jsObjectView.js and
stylesheets.js), the XUL <textbox type="autocomplete"> function-
ality has one (in autocomplete.xml), and the Navigator about:config
URL functionality has one (in config.js). The JavaScript Debugger and sev-
eral other tools such as the Component Viewer implement JavaScript-based
views as well.

Several of these JavaScript applications have created reusable prototype
objects for custom views. These objects attempt to reduce the work required to
create a view.

13.4 STYLE OPTIONS

Mozilla has a special styling system for <trees>. <listbox>, on the other
hand, is mundane.

AppDevMozilla-13 Page 468 Thursday, December 4, 2003 6:36 PM

13.4 Style Options 469

13.4.1 <listbox>

The listbox system has no Mozilla extensions unique to the CSS2 style system.
It does, however, have an extensive set of style rules and id’ed tags to which
styles can be applied. These rules appear in xul.css in toolkit.jar and in
listbox.css in the global skin (e.g., in classic.jar). All those files are in
the chrome.

13.4.2 <tree>

XUL has some unique and specific style functionality. This functionality is
used for trees, which are styled differently than all other tags. All the body of a
given tree, specified as content of the <treechildren> tag, can be styled
directly from a treechildren selector. A style extension makes this possible.

Styling of trees is done using new pseudo-classes. Here is an example
style, based on a tree that represents a company organization chart. If a staff
member has been hired recently, then his or her entry is yellow:

treechildren:-moz-tree-row(hired)
 { background-color : yellow };

The -moz-tree-row pseudo-class identifies what is to be styled, in this
case the rows of the tree. This selector is passed a list of zero or more parame-
ters. Each of these parameters is a text string. Such a text string appears in
some content tag of the tree as an argument to the properties keyword. For
example,

<row properties="hired,causeNewDept,dateJune">...</row>

Any and all tags within a tree’s body that have a property of hired are
styled according to the given rule, so that includes the example <row> tag. If
the rule appeared thus

treechildren:-moz-tree-row(hired,dateJuly)
 { background-color : yellow };

then the example row would not be styled because it does not contain both
properties listed in the style rule.

Three pieces of information are required to make a style built with this
system work:

1. The right pseudo-class name needs to be chosen.
2. A suitable property name needs to be decided.
3. The style properties available for the pseudo-class need to be reviewed.

Each of these items is covered in turn here.

13.4.2.1 Tree Pseudo-Classes Table 13.6 lists the tree pseudo-selectors that
are Mozilla extensions to the CSS2 standard.

AppDevMozilla-13 Page 469 Thursday, December 4, 2003 6:36 PM

470 Listboxes and Trees Chap. 13

13.4.2.2 Built-in Property Names CSS2 uses keywords rather than literal
strings for most purposes. It’s important to remember that special tree-styling
properties are just arbitrary strings of text that the application developer
makes up. They are application-specific and have no meaning to the style sys-
tem.

Some of the property-naming work is done for you. Special property
names are automatically applied to a tree’s contents when it is created and
when the user interacts with it. These names still have no meaning to the
style system. They are meaningful only in terms of the structural arrange-
ment of a tree, and for use in custom pseudo-selectors. These names are auto-
matically added to properties lists by Mozilla and can be selected just like
user-defined properties. Table 13.7 lists them.

Table 13.6 CSS2 pseudo-class extensions for XUL trees

Pseudo-selector name Matching part of the displayed tree

:-moz-tree-row A whole row, but without leading indentation

:-moz-tree-cell One cell in a row

:-moz-tree-column A whole column

:-moz-tree-cell-text Text within a cell

:-moz-tree-twisty The icon (twisty) clicked on that controls subtree
expansion

:-moz-tree-indentation Blank space to the left of an indented row

:-moz-tree-line The small lines connecting parent, child, and sibling
rows in the primary column

:-moz-tree-image An image that prefixes a cell’s contents

:-moz-tree-separator <treeseparator>

:-moz-tree-drop-feedback The line that appears between rows when dragging a
row around

:-moz-tree-progressmeter A cell whose column is type=“progressmeter”

Table 13.7 Style pseudo-selector automatic properties for XUL trees

Property string Meaning

container The thing to style is part of an internal node.

leaf The thing to style is part of a leaf node.

open The thing to style is part of an internal node, and that node is
uncollapsed so that any subtree contents are showing.

AppDevMozilla-13 Page 470 Thursday, December 4, 2003 6:36 PM

13.4 Style Options 471

Recall that simple tree structures are built from internal nodes, which
contain other nodes, and leaf nodes, which contain data. XUL tree nodes are
either leaf nodes or internal nodes, but not both.

There is a second group of automatically available properties. All ids of
all tree columns are available as properties. You should therefore ensure that
those ids are legal CSS2 names.

Regardless of whether automatically available properties are used, you
are always free to make up new property names.

13.4.2.3 Matching CSS2 Properties The third aspect of this custom styling
system is quite tricky. Each of the pseudo-classes supports only a small num-
ber of the CSS2 style properties. If you choose a property that isn’t supported,
then nothing will happen. Table 13.8 sketches out which CSS2 properties are
available for each pseudo-class.

closed The thing to style is part of an internal node, and that node is
collapsed so that any subtree contents are hidden.

selected The thing to style is part of a selected row.

current The thing to style is part of the currently selected row.

focus The tree is the currently focused document element.

sorted The tree rows are sorted.

primary The thing to style is part of the primary tree column.

progressmeter The thing to style is part of a <treecol type=“progressmeter”>.

progressNormal The thing to style is a part of a progress meter that reports
progress as it occurs.

progressUndeter-
mined

The thing to style is part of a progress meter that only reports
when it’s underway or finished.

progressNone The thing to style is part of a progress meter that doesn’t
report progress.

dragSession The user is dragging a tree element with the mouse.

dropOn The user’s dragged object is over the thing to style.

dropBefore The user’s dragged object is just above the row that the thing to
style is in.

dropAfter The user’s dragged object is just below the row that the thing to
style is in.

Table 13.7 Style pseudo-selector automatic properties for XUL trees (Continued)

Property string Meaning

AppDevMozilla-13 Page 471 Thursday, December 4, 2003 6:36 PM

472 Listboxes and Trees Chap. 13

Putting together Tables 13.6, 13.7, and 13.8 yields the following example,
which is entirely constructed out of names that Mozilla is aware of:

treechildren:-moz-tree-cell(leaf,focus)
 { background-color : red; }

This says that any row in the tree that is a leaf row and that has the cur-
rent input focus will have its cell background changed to red. Because back-
ground styles are supported for tree cells, this style rule both is sensibly
constructed and will have the desired effect. Compare that with the earlier
examples of this system which use custom styles consisting of known targets
and known pseudo-selectors but use application-specific property strings.

13.4.3 Native Theme Support

As of version 1.4, trees do not have native theme support on Microsoft Win-
dows XP.

Where native themes are supported, the -moz-appearance style prop-
erty can be set to these values:

listbox listitem treeview treeitem treetwity treetwistyopen treeline
treeheader treeheadercell treeheadersortarrow

Table 13.8 CSS2 properties supported by new pseudo-selectors

Pseudo-selector
Tag to use for prop-
erties attribute

Types of CSS2 sstyle property
supported

:-moz-tree-row <treerow> Backgrounds, borders, margins, outlines,
padding, display, -moz-appearance

:-moz-tree-cell <treecell> Backgrounds, borders, margins, outlines,
padding, visibility

:-moz-tree-column <treecol> Margins, text styles, visibility

:-moz-tree-cell-text <treecell> Foreground color, fonts, visibility

:-moz-tree-twisty <treecell> Margins, padding, borders, display, -moz-
appearance, list styles, positioning

:-moz-tree-indentation <treeitem> Positioning

:-moz-tree-line <treeitem> Borders, visibility

:-moz-tree-image <treeitem>, <treecell> List styles, margins, positioning

:-moz-tree-separator <treeseparator> Display, borders, -moz-appearance

:-moz-tree-drop-feedback <treerow> Margins, visibility

:-moz-tree-progressmeter <treecell> Foreground color, margins

AppDevMozilla-13 Page 472 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 473

13.5 HANDS ON: NOTETAKER: THE KEYWORDS PANEL

This “Hands On” session is about using standard, scripted XUL to master
<listbox> and <tree>. First, we’ll build a static page out of pure XUL, and
then we’ll enhance it to include scripting effects. We’ll also experiment a little.

At last it’s time to complete the layout and XUL content of the NoteTaker
dialog box. Until now the Keywords panel of the displayed <tabbox> has con-
tained only a placeholder. We’ll fix that by adding a listbox, a tree, and some
other form elements.

The Keywords panel allows the user to add keywords to, and delete key-
words from, the current note. It also lists the current keywords. Finally, it dis-
plays keywords related to the current keyword, which provides a memory
jogger to the user.

To design this pane, we must go back to Chapter 2, XUL Layout, and
start with a rough diagram and then work on layout, static content, form ele-
ments, and so on. Rather than repeat that process here, we’ll just summarize
the important results.

☞ A <textbox> will allow the user to enter a keyword.
☞ A <listbox> will display the current set of keywords.
☞ An Add <button> will copy the <textbox> contents into the <list-

box> as a new item.
☞ A Delete <button> will remove the <textbox> contents from the list

box if it already exists.
☞ Clicking on a <listbox> item copies it to the <textbox>.
☞ A <tree> will display the keywords related to the keywords in the

<listbox>.

Both the <listbox> and <tree> tags will have dynamically changing
content. In this chapter, we’ll implement those with JavaScript, the DOM, and
tree views. For now, the related keywords we’ll use will come from a small,
fixed set. In the next chapter, we’ll replace part of this system with a better
solution based on templates. We’re not going to use the RDF model designed in
the last chapter. We’ll do that in the next chapter.

Altogether, this result will be a dialog box as shown in Figure 13.8.

13.5.1 Laying Out <listbox> and <tree>

Without further ado, the structure of the Keywords panels is shown in Listing
13.5.

Listing 13.5 New panel content for the NoteTaker Edit dialog box.
<tabpanel>
 <vbox>
 <hbox>

AppDevMozilla-13 Page 473 Thursday, December 4, 2003 6:36 PM

474 Listboxes and Trees Chap. 13

 <vbox>
 <description value="Enter Keyword:"/>
 <textbox id="dialog.keyword"/>
 <hbox>
 <button id="dialog.add" label="Add"/>
 <button id="dialog.delete" label="Delete"/>
 </hbox>
 </vbox>
 <vbox>
 <description value="Currently Assigned:"/>
 <listbox/>
 </vbox>
 </hbox>
 <description value="Related:"/>
 <tree/>
 </vbox>
</tabpanel>

The panel is made of two boxes stacked vertically. The top box has a left
and right half. In this listing the <listbox> and <tree> tags are not filled in,
for brevity. The <listbox> content is shown in Listing 13.6.

Listing 13.6 Static <listbox> content for current NoteTaker keywords.
<listbox id="dialog.keywords" rows="3">
 <listitem label="checkpointed"/>
 <listitem label="reviewed"/>
 <listitem label="fun"/>
 <listitem label="visual"/>
</listbox>

In the completed version of NoteTaker, these keywords will come from an
RDF file that will be composed from user input. Here we’re starting out with
some fixed keywords. Similarly for the <tree> tag, we start with some fixed
related keywords. The content of the <tree> tag appears in Listing 13.7.

Fig. 13.8 NPA diagram showing <list> and <tree> technology.

AppDevMozilla-13 Page 474 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 475

Listing 13.7 Static <tree> content for related NoteTaker keywords.
<tree id="dialog.related" hidecolumnpicker="true" seltype="single"

flex="1">
 <treecols>
 <treecol id="tree.all" hideheader="true" flex="1" primary="true"/>
 </treecols>
 <treechildren flex="1">
 <treeitem container="true" open="true">
 <treerow> <treecell label="checkpointed"/> </treerow>
 <treechildren>
 <treeitem>
 <treerow> <treecell label="breakdown"/> </treerow>
 </treeitem>
 <treeitem>
 <treerow> <treecell label="first draft"/> </treerow>
 </treeitem>
 <treeitem>
 <treerow> <treecell label="final"/> </treerow>
 </treeitem>
 </treechildren>
 </treeitem>
 <treeitem container="true" open="true">
 <treerow> <treecell label="reviewed"/> </treerow>
 <treechildren>
 <treeitem>
 <treerow> <treecell label="guru"/> </treerow>
 </treeitem>
 <treeitem>
 <treerow> <treecell label="rubbish"/> </treerow>
 </treeitem>
 </treechildren>
 </treeitem>
 <treeitem container="true" open="true">
 <treerow> <treecell label="fun"/> </treerow>
 <treechildren>
 <treeitem>
 <treerow> <treecell label="cool"/> </treerow>
 </treeitem>
 </treechildren>
 </treeitem>
 </treechildren>
</tree>

The keywords in this tree are displayed as a hierarchy, but it’s not
implied that child keys are subtopics of parent keys. That is a tempting way to
think of them. They’re just related concepts. A Web page could receive a note
with the “guru” keyword, but not the “reviewed” keyword if the user decided
that “guru” meant the page author was well-known, rather than that the page
contained well-thought-out information.

A hierarchical display such as the <tree> tag lends itself well to hierar-
chically broken-down material, but it can be applied to other problems as well.

AppDevMozilla-13 Page 475 Thursday, December 4, 2003 6:36 PM

476 Listboxes and Trees Chap. 13

We’re using it to show relationships that form a simple network. Instead of
viewing the network as a whole, we’re discovering parts of it from a set of
starting points. That’s not unlike the RDF queries in Chapter 14, Templates,
but here it’s familiar XUL and JavaScript technology.

13.5.2 Systematic Use of Event Handlers

Here is how this dialog box will work. The top-left part of this box is where the
user enters new keywords. Clicking Add puts the typed-in keyword into the
list at top right; clicking Delete removes it from the list. Clicking an item in
the list copies that item to the textbox. If a list item is selected, then the
matching item in the tree is selected and scrolled to. If an item in the tree is
clicked, it is copied to the textbox.

All these actions could be implemented as commands. Some of these
actions, however, are fairly trivial. It can be overkill to make every fragment of
script a command. None of these actions sound like formal “transactions,”
“instructions,” or “operations.” They’re just GUI tweaks. We’ll use plain event
handlers to implement them.

We could add these event handlers to individual <listbox> and <tree>
content tags (onclick= ...), but we won’t. Tree views also support custom
actions, which are like localized commands (see the tree view methods pre-
fixed with performAction). We’re not doing that either. For our plain events,
we’ll need:

☞ onclick on the Add <button>
☞ onclick on the Delete <button>
☞ onselect on the <listbox>
☞ onselect on the <tree>

Rather than use XUL syntax, we’ll choose a more interesting option.
We’ll use the DOM 2 Events “EventTarget” interface, in particular, the
addEventListener() method. This method is available on every DOM Ele-
ment object, which means most XUL tags. Using just scripts, we’ll install all
the event handlers when the Edit dialog box first loads. Listing 13.8 shows
how this is set up.

Listing 13.8 Event handler installation for NoteTaker Keywords panel.
var ids = {};

function init_handlers()
{
 var handlers = [
 // id event handler function
 ["dialog.add", "click", add_click],
 ["dialog.delete", "click", delete_click],
 ["dialog.keywords", "select", keywords_select],
 ["dialog.related", "select", related_select]
];

AppDevMozilla-13 Page 476 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 477

 for (var i = 0; i < handlers.length; i++)
 {
 var obj = document.getElementById(handlers[i][0]);
 obj.addEventListener(handlers[i][1], handlers[i][2], false);
 ids[handlers[i][0]] = obj;
 }
 // also spot this final tag
 ids["dialog.keyword"] = document.getElementById("dialog.keyword");
}

window.addEventListener("load",init_handlers, true);

The init_handlers() function is installed as a handler that runs
when the document is first loaded. When it runs, it installs five more handlers,
using the tag ids, event names, and functions supplied in the handlers array.
Those handler functions all accept a single argument, which is an Event
object. In the case of this simple pane, each handler is used in only one place,
so the Event object is not that useful. The function also stores in the ids object
the DOM objects for each handler. This is just a performance optimization that
saves retrieving those objects over and over later on in the handlers.

Each of these handlers is described in turn. The listbox and tree widgets
are more complex than a simple button, so we’ll need to roll our sleeves up a
bit—there’s plenty of code. Other programming environments have their head-
ers, libraries, and modules; Mozilla has documentation on XBL, XPIDL, DOM,
and this book. We’ll need to use all that documentation to do a professional job.

Listing 13.9 shows the add_click() handler’s code:

Listing 13.9 add_click() handler for NoteTaker keywords.
function add_click(ev)
{
 var listbox = ids["dialog.keywords"];
 var textbox = ids["dialog.keyword"];

 // getRowCount() workaround
 var items = listbox.childNodes.length;

 if (textbox.value.replace(/^ *$/,"") == "")
 return; // don't add pure whitespace

 for (var i = 0; i < items; i++)
 {
 if (listbox.getItemAtIndex(i).label == textbox.value)
 return; // already exists
 }

 listbox.appendItem(textbox.value, textbox.value);
 listbox.scrollToIndex(items > 1 ? items - 2 : items);
}

AppDevMozilla-13 Page 477 Thursday, December 4, 2003 6:36 PM

478 Listboxes and Trees Chap. 13

This function adds the typed keyword to the listbox of existing keywords.
It looks through the <listbox> items to see if the new item is already there,
and if not, that item is added and the listbox scrolled to it so that the user can
see it.

Most of the method calls in this function come from Table 13.2, but we
also had to peek at the XBL definition for <listitem> and <textbox> to find
the label and value properties.

Nothing is perfect, and as this book goes to press, the <listbox>
getRowCount() XBL method has a bug, which will probably be fixed by the
time you read this. That function returns the total number of existing list
items (when it works properly). As a workaround, we go underneath the AOM
widget level, which means using basic XML methods from the DOM 1 Core.
The third line of the code returns a DOM 1 Core NodeList object, whose
length property is the number of direct children of the <listbox> tag. That
works for us because we know there’s no <listcols> tag in our listbox.

Listing 13.10 shows the code for the delete_click() handler.

Listing 13.10 delete_click() handler for NoteTaker keywords.
function delete_click(ev)
{
 var listbox = ids["dialog.keywords"];
 var textbox = ids["dialog.keyword"];
 var items = listbox.childNodes.length;

 for (var i = 0; i < items; i++)
 if (listbox.getItemAtIndex(i).label == textbox.value)
 {
 listbox.removeItemAt(i);
 return;
 }
}

This handler is a very minor variation on the add_click() handler. It
deletes the textbox item from the listbox.

Listing 13.11 shows the code for the keywords_select() handler.

Listing 13.11 keywords_click() handler for NoteTaker keywords.
function keywords_select(ev)
{
 var listbox = ids["dialog.keywords"];
 var textbox = ids["dialog.keyword"];
 var tree = ids["dialog.related"];
 var items = document.getElementsByTagName('treecell');
 var item = null, selected = null;

 try { listbox.currentItem.label; }
 catch (e) { return; }

 textbox.value = listbox.currentItem.label;

AppDevMozilla-13 Page 478 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 479

 var items = document.getElementsByTagName('treecell');
 for (var i = 0; i < items.length; i++)
 {
 if (items.item(i).getAttribute("label") == textbox.value)
 {
 item = items.item(i).parentNode.parentNode;
 break;
 }
 }

 if (item)
 {
 selected = item;
 if (tree.view.getIndexOfItem(item) == -1)
 {
 while (item.tagName != "tree")
 {
 if (item.getAttribute("container") != "")
 item.setAttribute("open","true");
 item = item.parentNode.parentNode;
 }
 }
 // tree.currentIndex = tree.view.getIndexOfItem(selected);
 // only supplies the focus,not the selection.
 i = tree.view.getIndexOfItem(selected);
 tree.treeBoxObject.selection.select(i);
 tree.treeBoxObject.ensureRowIsVisible(i);
 }
}

This function copies the label of the currently selected listbox item to the
textbox. That takes one line of code. The rest of the function seeks and high-
lights the same keyword in the tree, if it exists. The tree view interfaces
described in Table 13.4 work only on the currently rendered rows of the tree
(including rows hidden by the surrounding scrollbox). If a keyword isn’t dis-
played, the view interfaces won’t find it. So we must use the DOM to search
through the tree. After we find a matched item, we can work through the tree
view to manipulate the display of the tree.

When grabbing the selected keyword, we have a second awkward prob-
lem with <listbox>. The currentItem XBL property isn’t maintained cor-
rectly; specifically it is poorly created when the listbox has no currently
selected elements. Although this is not obvious, it will spew errors to the con-
sole if we don’t do something. These errors occur because our onselect han-
dler also happens to be invoked when the listbox is scrolled. The try {} block
catches this special case and aborts the handler, since there’s nothing to do in
that case.

To find the keyword in the tree, we use the very heavyweight DOM 2
Core method getElementsByTagName(). It searches the whole DOM for a
given tag and returns all instances as a collection. We happen to know the only

AppDevMozilla-13 Page 479 Thursday, December 4, 2003 6:36 PM

480 Listboxes and Trees Chap. 13

<treecell> tags in the document are in the required tree, so it is safe and
convenient to use this method. The actual keyword is stored in a <treecell>
inside a <treerow> inside the <treeitem> tags returned. So we use the
DOM 1 Core parentNode attribute to reach up to the <treeitem> tag, which
we’ll need to manipulate the visual appearance of the tree.

If we find a keyword, we need to expose the item displaying it in the tree.
We start at the <treeitem> and reach up the tree, opening any containers we
find by marking the <treeitem> tags with open="true". Again this is done
with the DOM 1 Core. After the treeitem with the keyword is displayed, it will
be visible to the tree view interface.

To finish up, we select the row of the tree with the keyword. The user will
see this and can then easily see other keywords that might be relevant, both
above and to a single level below in the hierarchy. To do this we use the tree
view interface, which is exposed by the XBL property tree.view. We could
have just as easily (but slightly more verbosely) acquired the view by using the
AOM tree.treeBoxObject property, but we would’ve also had to use
XPCOM’s QueryInterface() method to extract the correct interface on that
object. So we’ve done it the quick way.

We can’t use the tree.currentIndex XBL property to select the tree
row because that property records only the row that’s focused, not the row
that’s highlighted. If you experiment with it, note the dotted line that appears
around the correct row, indicating that the focus is present. Instead we use the
AOM treeBoxObject.selection object, which implements the interface
nsITreeSelection. The simple method select() highlights the row in
question. Finally, we go back to the AOM treeBoxObject to scroll the tree
view so that the selected row is not clipped by the scroll box that surrounds
the tree.

Listing 13.12 shows the code for the related_select() handler.

Listing 13.12 related_select() handler for NoteTaker keywords.
function related_select(ev)
{
 var textbox = ids["dialog.keyword"];
 var tree = ids["dialog.related"];

 textbox.value = tree.view.getCellText(tree.currentIndex, "tree.all");
}

After keywords_select(), related_select() is a very simple job. It
picks out the currently selected keyword from the tree view and copies its
value to the textbox. No DOM operations are used at all.

That concludes the event handler logic for the Keywords panel. Some
commands, like notetaker-save and notetaker-load, need an update to
accommodate this new pane. We’ll put off doing that, because we’re going to
change everything to RDF in the next chapter.

AppDevMozilla-13 Page 480 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 481

13.5.3 Data-Driven Listboxes and Trees

We have now created the dialog box so that most of its trivial interactivity is in
place, but the initial keywords are restricted to a statically defined set of XUL
tags. Our ultimate solution is to feed content into these widgets using RDF,
but as a brief experiment, we’ll feed content to these widgets from plain Java-
Script.

A sufficient reason for this experiment is the problem of related key-
words. If A is related to B, then surely B is also related to A. Even though hier-
archical XML is not so good at handling these two-way relationships, we’d like
the tree widget to show related keywords in both directions. The tree display
will still be organized hierarchically (that’s all it can do), but our custom pro-
cessing will feed a better set of information to the widget.

To feed content to <listbox>, the only option we’ve encountered so far
is to use the raw DOM operations. This is sometimes called a dynamic listbox.
To feed content to <tree>, we can use a tree view. Because we’ll create that
view, it is a custom tree view, or custom view.

There are several ways to create these things. For example, existing
JavaScript libraries inside the cview and DOM Inspector tools provide Java-
Script objects that are designed to make custom tree views easier. Also some
treelike data, such as IMAP and SNMP data, place performance or functional-
ity restrictions on how that data can be accessed. Here we’ll stick to a from-
scratch, basic approach.

In terms of the Model-View Controller design pattern, we’ll implement
the MVC model as a simple JavaScript data structure for both <tree> and
<listbox>. The View will be built on top of (a) Mozilla’s fundamental layout
system, (b) the DOM hierarchy, and (c) the specialist box objects for <list-
box> and <tree>. In the <listbox> case, the standard DOM interfaces are
the meat and drink that our MVC view will be based on. In the <tree> case,
we only need to create a special view object to implement the MVC view.
Finally, the MVC in the <listbox> case is up to us to write, but in the
<tree> case, it’s the tree’s existing builder, and so we don’t need to do any-
thing there.

Before exploring this functionality, we’ll turn off the event handlers cre-
ated previously. They’re not part of this experiment:

// window.addEventListener("load",init_handlers, true)

We also need to remove the existing, static content for the <listbox>
and <tree> tags in the XUL document. Those tags will be reduced to these
XUL fragments:

<listbox id="dialog.keywords" rows="3"/>

<tree id="dialog.related" hidecolumnpicker="true" seltype="single"
flex="1">

 <treecols>

AppDevMozilla-13 Page 481 Thursday, December 4, 2003 6:36 PM

482 Listboxes and Trees Chap. 13

 <treecol id="tree.all" hideheader="true" flex="1" primary="true"/
>

 </treecols>
 <treechildren flex="1"/>
</tree>

As usual, we have some initialization code to set everything up. Listing
13.13 shows this code.

Listing 13.13 Setup for data-driven NoteTaker keyword widgets.
var listdata = ["checkpointed", "reviewed", "fun", "visual"];

var treedata = [
 ["checkpointed", "breakdown"],
 ["checkpointed", "first draft"],
 ["checkpointed", "final"],
 ["reviewed", "guru"],
 ["reviewed", "rubbish"],
 ["fun", "cool"],
 ["guru", "cool"]
];

function init_views()
{
 var listbox = document.getElementById("dialog.keywords");
 var tree = document.getElementById("dialog.related");

 listbox.myview = new dynamicListBoxView();
 listbox.mybuilder = new dynamicListBoxBuilder(listbox);
 listbox.mybuilder.rebuild();

 tree.view = new customTreeView(tree);
}

window.addEventListener("load",init_views, true);

The listdata and treedata arrays hold the seminal data for the list-
box and tree content. In this example, that content is still static, but this code
is easy to modify so that dynamic changes to that data are also pushed to the
widgets. The pairs of values in the treedata variable are related pairs of key-
words. If the first such pair were expanded a little, it could almost pass for a
fact:

<- "checkpoint", related, "breakdown" ->

This approach, therefore, is slowly leading us in the direction of RDF. There’s
no RDF in this experiment, however.

The init_views() function creates three custom JavaScript objects—
two for the listbox and one for the tree. There is less to do for the tree because
it has a built-in builder that automatically goes to work when the <tree> tag
is displayed. Listbox also has a builder, but it is not exposed to the application

AppDevMozilla-13 Page 482 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 483

programmer until we learn about templates. We’ve used properties myview
and mybuilder to emphasize that in the listbox case we’re not overriding
anything that the platform already has. This initialization step is done when
the document loads, and there are no other event handlers that run later; but
see the section “Custom Tree Views.”

13.5.3.1 Dynamic Listboxes A dynamic <listbox> has all its displayed
rows generated from a script. The script needs to implement both a view and a
builder. Not only do these two objects create a working effect, they also give us
some insight into the harder <tree> case. In the <tree> case, the builder
(and sometimes the view) is hidden inside the platform’s own code. The
<listbox> case fully exposes these objects (because we create them), and we
can imagine how the <tree> case works by analogy.

The first object, shown in Listing 13.14, is the view object for the listbox.

Listing 13.14 JavaScript object for the dynamic listbox View.
function dynamicListBoxView() {}

dynamicListBoxView.prototype = {
 get rowCount ()
 {
 return listdata.length;
 },
 getItemText: function (index)
 {
 return listdata[index];
 }
};

This object is a simple case of data-abstraction. The original data for the
interface is hidden behind the view’s interface. This object does more than
that, however. It provides an interface that is expressed in terms of displayed
rows in the <listbox>—rows or items. This association with the visible rect-
angular rows of the listbox is what makes it a view. It is convenient that the
object uses an array of data, and that each member of that array exactly
matches one listbox item. If, however, the underlying array were replaced with
some other, more complex, data structure, the object would still be a view. This
is because, to the outside world, its unchanged interface would still make the
set of listbox items look like a simple list of viewable rows.

By itself, the View does nothing. It is the builder object that exploits that
view. It appears in Listing 13.15.

Listing 13.15 JavaScript object for the dynamic listbox builder.
function dynamicListBoxBuilder(listbox) {
 this._listbox = listbox;
}

AppDevMozilla-13 Page 483 Thursday, December 4, 2003 6:36 PM

484 Listboxes and Trees Chap. 13

dynamicListBoxBuilder.prototype = {
 _listbox : null,
 rebuild : function () {
 var rows, item;

 while (_listbox.hasChildNodes())
 _listbox.removeChild(_listbox.lastChild);

 rows = _listbox.myview.rowCount;

 for (var i=0; i < rows; i++)
 {
 item = document.createElement("listitem");
 item.setAttribute("label", listbox.myview.getItemText(i));
 _listbox.appendChild(item);
 }
 }
}

The builder is also simple—it contains one method: rebuild(). When
rebuild is called, the object goes to work on the <listbox>’s DOM 1 Core
Element object. First, it removes all the existing listbox rows; then it adds
back in a full set of up-to-date rows. Assumptions are made that the <list-
box> has only <listitem> children and no column specifications, and for our
case that is true. Again, it is convenient, but not necessary, that each dis-
played row equals exactly one DOM Element (a <listbox> element).

When the builder goes to work, it relies entirely on the view object. The
only thing the builder knows about the content to be displayed is what the
view tells it.

Both the view and the builder objects could be enhanced so that the list-
box can be changed after it is built. In the current implementation, updating
the listbox requires that (a) the array be changed and then (b) the builder’s
rebuild() function be called. Each such change is a 100% update of the list-
box. To make only partial changes, extra methods would need to be added to
the builder object, and some system would need to be put in place so that the
builder knows when to make those partial changes, and what those changes
are.

13.5.3.2 Custom Tree Views A customized tree is more complicated to
understand than a dynamic listbox. Several pieces are in place already: Trees
have an existing builder and view, and both are advised when a user’s clicking
opens or collapses part of a tree, or scrolls the tree’s viewport. When parts of
trees are opened or closed (but not when they are scrolled), the number of rows
in the tree’s display changes, even if the data underlying the displayed tree
does not. So ordinary XUL trees are inherently more dynamic than listboxes
because the number of viewable rows can change, whereas ordinary listboxes
have a fixed number of viewable rows.

AppDevMozilla-13 Page 484 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 485

To proceed, we intend to fit in with the existing tree content builder and
override the existing tree content viewer with our own view. That means creat-
ing an object with the nsITreeView interface. Such an object is quite large, so
we attack it a piece at a time. The overall structure of this object is shown in
Listing 13.16.

Listing 13.16 Skeleton of a JavaScript Custom Tree View object.
function customTreeView(tree) {
 this.calculate();
 this._tree = tree;
}

customTreeView.prototype = {
 // 1. application specific properties and methods
 calculate : function () { ... },
 ...
 // 2. Important nsITreeView features
 getCellText : function (index) { ... },
 ...
 // 3. Unimportant nsITreeView features
 getImageSrc : function (index) { ... },
 ...
 }

Here is a breakdown of this object. The customTreeVew() constructor is
specific to our application. It calculates some information held internally in
the object and retains a reference to the <tree> object. That is just prepara-
tion work. The prototype for the object contains all the ordinary properties and
methods. We’re free to add whatever features we want, as long as we also
implement the nsITreeView interface. Part 1 of the prototype is these addi-
tional features, which the tree builder knows nothing about and doesn’t need
or use. Part 2 of the prototype is a portion of the nsITreeView interface. That
interface has methods for many different aspects of <tree> content: drag and
drop, styles, specialist content like progress meters, and so on. Some aspects of
the interface are critical—either for the builder or for our own purposes—and
that portion of the interface we will implement properly. Part 3 is the other
part of the nsITreeView interface. For this other part, we’ll provide stub rou-
tines that do nothing or almost nothing.

In fact, it’s possible to omit some of the less-used methods of the nsI-
TreeView altogether. If the builder decides to call those missing methods,
which it might or might not do, then an error will appear in the JavaScript
console. It’s better to provide a minimal implementation of everything than
gamble that something will never be needed.

Let’s now address the three parts of this custom view object.
The first part, the application-specific part, is by far the most compli-

cated. It is complicated because in this example we’re going to design most of
the requirements of the builder into this part. It’s also complicated because

AppDevMozilla-13 Page 485 Thursday, December 4, 2003 6:36 PM

486 Listboxes and Trees Chap. 13

our initial data (the treedata array) is nothing like a hierarchical tree. We
must fix that.

Our overall goal is to transform the raw data into other data structures.
The first data structure is a hierarchy that will match the hierarchy that the
tree displays. This data structure might represent all the possible data, or just
the currently open-for-display subtrees. In our case, it’s the open subtrees only.
The second data structure is an indexed list of the displayed items in the tree.
Even though a primary column of a <tree> can be hierarchical, the rectangu-
lar tree items of the tree form a simple ordered list. It is the index numbers of
this simple list that are passed as arguments from the builder to the view and
back again, and that make the view a view. This is the same as the dynamic
listbox case. The custom view we make must be able to handle these indexes.

Our tactics for these data structures follow:

☞ Create a relatedMatrix data structure that represents all the key-
word-to-keyword pairs. This will be handier to use than the simple list
we are given and has nothing to do with custom views.

☞ Create an openTree data structure so that we can keep track of what
the tree looks like. We need to stay synchronized with the user’s actions
on the tree.

☞ Create a viewMap data structure. This is a collection in the form of an
array that maps from the tree item index to the openTree data structure.

These data structures are created in Listing 13.17, which is Part 1 of the
custom view object’s prototype.

Listing 13.17 NoteTaker specific part of a custom view object.
 _ relatedMatrix : null,
 _openTree : null,
 _viewMap : null,

 calculate : function () {
 this.calcRelatedMatrix();
 this.calcTopOfTree();
 this.calcViewMap();
 },

 calcRelatedMatrix : function () {
 this._relatedMatrix = {};
 var i = 0, r = this._relatedMatrix;
 while (i < treedata.length)
 {
 if (! (treedata[i][0] in r))
 r[treedata[i][0]] = {};
 if (! (treedata[i][1] in r))
 r[treedata[i][1]] = {};

 r[treedata[i][0]][treedata[i][1]] = true;

AppDevMozilla-13 Page 486 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 487

 r[treedata[i][1]][treedata[i][0]] = true;
 i++;
 }
 },

 calcTopOfTree : function () {
 var i;
 this._openTree = [];

 for (i=0; i < listdata.length; i++)
 {
 this._openTree[i] = { container : false,
 open : false,
 keyword : listdata[i],
 kids : null,
 level : 0
 };
 if (listdata[i] in this._relatedMatrix)
 this._openTree[i].container = true;
 }
 },

 calcViewMap : function () {
 this._viewMap = [];
 this.calcViewMapTreeWalker(this._openTree, 0);
 },

 calcViewMapTreeWalker : function(kids, level) {
 for (var i=0; i < kids.length; i++)
 {
 this._viewMap.push(kids[i]);
 if (kids[i].container == true && kids[i].open == true)
 this.calcViewMapTreeWalker(kids[i].kids, level + 1);
 }
 },

That’s a lot of code, but it’s straightforward. First, there are three proper-
ties, all prefixed with underscore to indicate that they shouldn’t be touched by
users of the object. They will hold the view’s internal data structures. Then
there’s the calculate() method, which builds these data structures, using a
specific method in each case. The rest are those three specific methods.

The calcRelatedMatrix() makes a better-organized copy of the raw
data. For the raw data in Listing 13.13, it makes the data structure of Listing
13.18.

Listing 13.18 Example keyword-to-keyword relationship matrix.
_relatedMatrix = {
 "checkpointed" : { "breakdown" : true,
 "first draft" : true,
 "final" : true },
 "reviewed" : { "guru" : true,

AppDevMozilla-13 Page 487 Thursday, December 4, 2003 6:36 PM

488 Listboxes and Trees Chap. 13

 "rubbish" : true },
 "fun" : { "cool" : true },
 "guru" : { "cool" : true,
 "reviewed" : true },
 "breakdown" : { "checkpointed" : true },
 "first draft" : { "checkpointed" : true },
 "final" : { "checkpointed" : true },
 "rubbish" : { "guru" : true },
 "cool" : { "fun" : true,
 "cool" : true }
};

Every keyword in the original list of pairs appears as a property of the
_relatedMatrix object, and every keyword that is related to it has a property
on a subobject for that keyword. With this arrangement, both the forward- and
backward-related cases are recorded, and it’s easy to test if a given keyword is
related to another one. This data structure is our official keyword reference in
the view.

The next step is to create a hierarchical version of this related data. Each
tree item can have zero or more children, and any such children are ordered.
This means that each node of the tree (a data structure node, not a DOM node)
is a list of children (a bucket). We’ll use an array for each node. The calcTo-
pOfTree() starts this data structure off. It appears in Listing 13.19.

Listing 13.19 Creation of the root node in a tree data hierarchy.
 calcTopOfTree : function () {
 var i;
 this._openTree = [];

 for (i=0; i < listdata.length; i++)
 {
 this._openTree[i] = { container : false,
 open : false,
 keyword : listdata[i],
 kids : null,
 level : 0
 };
 if (listdata[i] in this._relatedMatrix)
 this._openTree[i].container = true;
 }
 },

This method creates an array of keyword records as the top-level node
and puts into it the keywords that appear in the listbox—the ones in the list-
data array. So the listbox keywords are all at the top level of the displayed
tree. Each keyword record is an object that holds the keyword string, a refer-
ence to the immediate children of this node, and some housekeeping informa-
tion. The housekeeping information is: whether this item is a container
(container="true" in XUL), whether this container is open in the tree dis-

AppDevMozilla-13 Page 488 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 489

play (open="true" in XUL), and the depth of this node in the tree. When the
time comes, other methods of the view will add to this tree.

Finally, we need to maintain an indexed list of the rows visible in the
tree. Listing 13.20 shows how this is done.

Listing 13.20 Creation of the root node in a tree data hierarchy.
 calcViewMap : function () {
 this._viewMap = [];
 this.calcViewMapTreeWalker(this._openTree, 0);
 },

 calcViewMapTreeWalker : function(kids, level) {
 for (var i=0; i < kids.length; i++)
 {
 this._viewMap.push(kids[i]);
 if (kids[i].container == true && kids[i].open == true)
 this.calcViewMapTreeWalker(kids[i].kids, level + 1);
 }
 },

The calcViewMap() method is the starting point for constructing this
list. It merely passes the root of the tree hierarchy to calcViewMapTree-
Walker(), which is a recursive function. This function walks through the open
parts of the tree left-to-right, which is the same order as the top-to-bottom
order displayed in the <tree> tag. At each found keyword, it adds a reference
to that keyword’s record to the index item list. So each keyword record is
tracked by both the tree and this list.

Altogether, these routines create data structures that are otherwise not
yet used. These data structures are created inside the view object. The relat-
edMatrix structure is entirely static, unless it is re-created. The other two
structures change over time.

Let’s turn to the important parts of the nsITreeView interface. Listing
13.21 shows most of these methods. The tree’s built-in builder will call these
methods when it needs to access the data that the view provides. If any cus-
tom scripts are needed later, they can call these methods, too.

Listing 13.21 Most important methods of the nsITreeView interface.
get rowCount() {
 return this._viewMap.length;
 },

 getCellText: function(row, column) {
 return this._viewMap[row].keyword;
 },

 isContainer: function(index) {
 return this._viewMap[index].container;
 },

AppDevMozilla-13 Page 489 Thursday, December 4, 2003 6:36 PM

490 Listboxes and Trees Chap. 13

 isContainerOpen: function(index) {
 return this._viewMap[index].open;
 },

 isContainerEmpty: function(index) {
 var item = this._viewMap[index];
 if (! item.container) return false;
 return (item.kids.length == 0); // empty?
 },

 getLevel: function(index) {
 return this._viewMap[index].level;
 },

 getParentIndex: function(index) {
 var level = this._viewMap[index].level;
 while (--index >= 0)
 if (this._viewMap[index].level < level)
 return index;
 return -1;
 },

 hasNextSibling: function(index, after) {
 var level = this._viewMap[index].level;
 while (++index < this._viewMap.length)
 {
 if (this._viewMap[index].level < level)
 return false;
 if (this._viewMap[index].level == level && index > after)
 return true;
 }
 return false;
 },

These methods and the rowCount property show how important the
viewMap is—we can directly read out the needed results. This is because of
our early design effort with data structures. Because keyword records con-
tain a precalculate level value, the more complex of the methods, like has-
NextSibling(), are still easy to implement. We need only look up or down
the viewMap until the level changes to find the required row. In the case of
getParentIndex(), this means looking up the list until the level
decreases by one. In the case of hasNextSibling(), this means looking
down the list for an item at the same level, but with no intervening items at
lesser levels.

A final important method is the toggleOpenState() method. It is
called when the user opens or closes a subtree. That action is unusual because
it changes the number of rows in the list of items displayed by the tree. The
implementation of toggleOpenState() must keep the view’s data structures
up to date when this happens, and it must also tell the underlying layout sys-

AppDevMozilla-13 Page 490 Thursday, December 4, 2003 6:36 PM

13.5 Hands On: NoteTaker: The Keywords Panel 491

tem to redraw (repaint and re-layout) the tree. If these two things are not
done, the view will be out-of-date in its understanding of the currently dis-
played view, and the tree display won’t change until the mouse cursor leaves
the tree’s XUL box. Listing 13.22 is the code for this method.

Listing 13.22 The important toggleOpenState() method of nsITreeView.
 toggleOpenState: function(index) {
 var i = 0;
 var node = this._viewMap[index];
 if (! node.container)
 return;
 if (node.open)
 {
 node.open = false;
 node.kids = null;
 i = index + 1;
 while (this._viewMap[index].level > this._viewMap[i].level)
 i++;
 i = i - index;
 }
 else
 {
 node.open = true;
 node.kids = [];
 for (var key in this._relatedMatrix[node.keyword])
 {
 node.kids[i] = { container : false,
 open : false,
 keyword : key,
 kids : null,
 level : node.level + 1
 };
 if (typeof(this._relatedMatrix[key]) != "undefined")
 node.kids[i].container = true;
 i++;
 }
 }
 this.calcViewMap();
 this._tree.treeBoxObject.rowCountChanged(index,i);
 },

This function aborts if the item supplied is not a container; otherwise, it
handles both the open closed subtree and close opened subtree cases. In each
case, it performs these tasks: updates the keyword record to match the new
toggle state, updates the openTree hierarchy by trimming a closed subtree
or adding a set of children records, and calculates the number of rows added
or deleted using the viewMap. In the open case, the relatedMatrix is con-
sulted to see how may children (related keywords of the current keyword)
need to be added. After either operation, the viewMap is entirely recalcu-
lated to bring the view’s understanding of the displayed rows up to date. The

AppDevMozilla-13 Page 491 Thursday, December 4, 2003 6:36 PM

492 Listboxes and Trees Chap. 13

final step is to tell the tree to refresh its display. To do that, we need to inter-
act with the tree’s special box object. Normally we only use that box object to
scroll, but its rowCountChanged() method (from the nsITreeBoxObject
interface) is exactly what we need. It accepts an index and a number of rows
from that index as a hint that describes the part of the tree that needs to be
re-painted.

In a simple tree with a custom view, such as this case, opening or closing
a subtree is the only way to change dynamically the list or rows currently dis-
played. If, however, event handlers are added to the tree, then those handlers
might also make dynamic changes. An example is a mouse click on a tree row
that deletes that row. For this to work, the handler must manipulate the
view’s data structures and call calcViewMap() and rowCountChange() just
as toggleOpenView() does. The cleanest way to arrange that is to add extra
methods to the view that do the work and then to call those methods from the
handler.

Having covered the application-specific methods of the view, and the
important nsITreeView methods, what remains of the custom view’s object
prototype are the unimportant nsITreeView methods. For another applica-
tion, some of these methods might be critical, but they’re not in our case. List-
ing 13.23 shows our implementation of them.

Listing 13.23 Less important methods of nsITreeView.
 canDropBeforeAfter: function(index, before) { return false; },
 canDropOn: function(index) { return false; },
 cycleCell: function(row, column) {},
 cycleHeader: function(col, elem) {},
 drop: function(row, orientation) { return false; },
 getCellProperties: function(row, prop) {},
 getCellValue: function(row, column) {},
 getColumnProperties: function(column, elem, prop) {},
 getImageSrc: function(row, column) {},
 getProgressMode: function(row, column) {},
 getRowProperties: function(row, column, prop) {},
 isEditable: function(row, column) { return false; },
 isSeparator: function(index) { return false; },
 isSorted: function() { return false; },
 performAction: function(action) {},
 performActionOnCell: function(action, row, column) {},
 performActionOnRow: function(action, row) {},
 selectionChanged: function() {},
 setCellText: function(row, column, value) {},
 setTree: function(tree) {}
}; // end of customTreeView.prototype

These methods either say “No” or do nothing. Our custom view doesn’t
support drag-and-drop anywhere on the tree. There are no properties on cells,
rows, or columns, and no cell values, images, progress meters, editable fields,
or implemented actions. We have no sorted columns or <treeseparator>

AppDevMozilla-13 Page 492 Thursday, December 4, 2003 6:36 PM

13.6 Debug Corner: Making <listbox> and <tree> Work 493

tags, and we don’t care if the user selects rows. The setTree() method is run
at tree initialization, and there’s nothing for us to do there; although we could
call calculate() in that method if we wanted. As it stands, we call calcu-
late() when the view object is created.

After a fair amount of code, our experiment with custom views is com-
plete. This experiment has several noteworthy results.

The first result is obvious: Using a custom view we can base a <tree> on
non-XML content using JavaScript. That might be preferable to manipulating
the DOM, especially for examples like ours where the original data for the tree
are not hierarchical.

The second result is not so obvious: Using our custom view the resulting
tree is infinite in size. If A is related to B, then B is related to A, and so opening
a subtree on one always reveals a further subtree on the other. Such infinite
trees clearly can’t be created with static XUL. In the next chapter, we’ll see
how partially constructed (and therefore possibly infinite) trees are a common
feature of the template system.

Our final result is that we’ve seen some of the inside mechanics of the
<tree> tag. That tag is backed by several platform-supplied interfaces and
structures (like a builder), and it pays to appreciate what’s going on in such a
powerful widget.

We’ve now finished the UI and the data model for the NoteTaker tool. In
the following “Hands On” sessions, we’ll finish it using RDF and templates.
That will be the last set of changes we’ll make to the way data are stored in
the tool.

13.6 DEBUG CORNER: MAKING <LISTBOX> AND <TREE> WORK

The <listbox> and <tree> tags are more complex than form elements and
can be very frustrating to use if the wrong approach is used. <listbox> is
still fragile and a little tricky, and that situation demands an element of cau-
tion. No matter how it may look, the <tree> tag is not fragile. It works prop-
erly, and if nothing displays inside the tree, then it must be the application
code at fault. As Mozilla matures, these two tags will no doubt become more
user friendly as well as more robust.

The main problem with <listbox> and <tree> stems from XUL. There
are no detailed run-time syntax or layout checks that can act as a compiler,
although debug features of the platform can spew out some diagnostics if
required. This means that success with these widgets requires good program-
mer habits—in particular structured testing.

The recommended way to proceed is to always, always start with the sim-
plest possible static widget and to work toward the desired end point using a
series of simple increments. Test every change to ensure that it builds up the
widget as you intend. If unexpected results occur, you can retreat one step to
the last safe position. Under no circumstances should you dump a screen full

AppDevMozilla-13 Page 493 Thursday, December 4, 2003 6:36 PM

494 Listboxes and Trees Chap. 13

of new code into a tree or listbox. Always start with a <listbox> or <tree>
that has a single, static row, even if you’ve made it all work before.

Many specific problems with these widgets are the result of simple over-
sights. Some of the more common oversights include the following:

☞ Lack of flex="1" attributes. The tags surrounding <tree> and <list-
box>, those two tags themselves, and column specifier tags all benefit
from flex.

☞ Using shorthand syntax for <tree>. <tree> and its content tags have
no shorthand or abbreviated syntax. All tags are required and must be
fully stated. <listbox> does have some shorthand.

☞ Missing column ids. If your <treecol> tags are missing column ids, you
can’t select anything in the tree.

☞ No height for <tree>. The <tree> tag has no default height. One must
be implied by the surrounding layout, or that tag must be given a height.

☞ Not enough homework. It’s a fact of life that the AOM, XBL, DOM, and
XPIDL documentation types are all stored in separate formats, plus this
book. They take some exploring before you can claim to have the land-
scape mapped out. Try examining a <tree> and a <listbox> with the
DOM Inspector, or review the content of this chapter.

☞ Confusion about “item indexes.” In the tree view interface, item indexes
represent the series of vertically stacked rectangles in the tree that each
displays a row. That set of rectangles is clipped by the tree viewing area.
“Item indexes” do not represent the tags that make up the content of the
tree, or even all the rows that might be displayed by the tree. These
indexes only represent the currently open subtrees and their exposed
rows. The same is true for listboxes, but in that case, there is a one-to-one
correspondence between viewable rectangles and listbox rows.

Overall, <tree> and <listbox> can’t always be used as trivially as
<button> can, so take care. Until <listbox> has a long track record of
robustness, beware of laying it out in the same horizontal space as other XUL
tags. Layout and behavior can be unusual in that case. Always try to arrange
matters so that <listbox> dictates the size of its layout area, not its sibling,
parent, or other nearby tags.

13.7 SUMMARY

<listbox> and <tree> are powerful widgets in the XUL bestiary. They are
like form elements on steroids. <listbox> is a little fragile, and <tree> a
little complicated, but they are both flexible display systems for serious data-
oriented applications.

AppDevMozilla-13 Page 494 Thursday, December 4, 2003 6:36 PM

13.7 Summary 495

Even so, you can only go so far displaying static data. The alternative of
scripting up content changes using the DOM is bulky, slow, and awkward. For
dynamic data, something new is required. Templates are that new technology,
and they are discussed next.

AppDevMozilla-13 Page 495 Thursday, December 4, 2003 6:36 PM

