

269

12

Open Source Litigation

Owning a Cause of Action

The prospect of litigation over open source software is dis-
turbing to all of us. Open source software cannot flourish in a
litigious environment in which everyone is suing everybody
else over perceived injustices relating to open source licenses.

Indeed, in practice, there is very little litigation over open
source. After all, why would a licensor who is permitting
everyone to copy, modify, and distribute his or her software
need to complain about someone who did those things? And
why would a licensee who receives software with essentially
unlimited rights to it need to demand even more from the
licensor? When the software is essentially

free

 (i.e., zero price),
and when software freedom is guaranteed by the license, why
would anyone bother to sue?

But litigation can occur, and it is important for anyone
involved with open source software to understand the risks.

The risks are low. If you honor the terms of the licenses for
open source software you acquire, you probably won’t be both-
ered. And whatever litigation risks you do accept with open
source software are essentially the same risks as with propri-
etary software. If you live in a litigious society, you need to be
prepared for lawsuits.

12_Rosen_ch12 Page 269 Thursday, June 17, 2004 11:10 AM

270

Open Source Licensing

A

cause of action

 is simply a matter for which a legal action
may be maintained. In the open source context, causes of
action can arise over intellectual property matters, such as
ownership of copyrights or patents, and interpretation or
enforceability of license and contract terms, and for business
practices that are perceived by one party or another to be
unfair. A cause of action is said to be

owned

 by the party that
has the right to maintain it in court.

When a licensee accepts software under an open source
license, he or she acquires nonexclusive rights to intellectual
property in the software, including the rights to make copies;
to create and distribute derivative works; and to execute
licenses to make, use, and sell products containing that soft-
ware. The licensor, you will recall, has made promises (express
or implied) to each licensee concerning the availability and
quality of the software. A licensee may sue in court to enforce
those promises, even if it means suing the licensor who gave
him or her that software in the first place or suing third parties
who improperly interfere with the practice of those rights. A
licensee, then, can potentially own one or more causes of
action and be the plaintiff in a lawsuit.

A licensor distributes software under an open source license
containing certain terms and conditions that licensees must
obey. Licensors may sue their licensees in court to enforce the
terms and conditions of the license or to terminate it. A licen-
sor, then, can potentially own one or more causes of action
and be the plaintiff in a lawsuit.

A contributor participates in an open source project and
submits his or her original works of authorship to the project.
The contributor may sue to protect his or her copyrights and
patents from those who use that software outside the scope of
the license (express or implied) to the project. A contributor,

12_Rosen_ch12 Page 270 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

271

then, can potentially own one or more causes of action and be
the plaintiff in a lawsuit.

A stranger may own a copyright or patent that is embodied
in open source software without the stranger’s authorization.
He or she may sue to have that infringing intellectual property
removed from the software. A third party, then, can poten-
tially own one or more causes of action and be the plaintiff in
a lawsuit.

Finally, there are societal interests at stake in open source
software. Governments may promulgate software export laws,
mandate standards for security, and enforce antitrust rules.
Bankruptcy laws may interfere with ownership of intellectual
property. These interests may be enforced in court, sometimes
directly by the government. Governments, or government
agencies, can potentially own one or more causes of action and
be plaintiffs in lawsuits.

Owning a cause of action, of course, doesn’t necessarily
mean that you will win in court. All you have is a right to
institute judicial proceedings, and it will be the judge or jury
that will decide, based on the facts and the law, whether the
plaintiff or the defendant wins.

Damages

The main reason we worry about litigation is because of the
consequences of losing. The other big reason is the cost of the
litigation itself. For major battles between big companies,
attorneys’ fees of more than $300,000 per month are now
commonplace in the United States. Ignoring attorneys’ fees for
the moment, though, what are the potential consequences of
losing a lawsuit?

Calculating damages arising from cause of action in a soft-
ware dispute is tricky. What is the value of software? Is it a

12_Rosen_ch12 Page 271 Thursday, June 17, 2004 11:10 AM

272

Open Source Licensing

function of the price paid for the software or the benefit
derived from the software? Are damages a function of what
was lost, such as business opportunity or sales? If the damages
were caused by a part of the software but not the entire pack-
age, should damages be prorated?

There are no default damage calculation rules, although
some licenses vaguely address this problem (e.g., MPL section
8.3; OSL/AFL section 11). There are also no standard royalty
rates for copyrights or patents against which damages can be
calculated.

The prospect of damages may encourage a company to file a
lawsuit, but it probably shouldn’t unless there is a reasonable
prospect of recovering at least enough in damages to pay for its
own attorneys’ fees and costs.

I once represented a company that wanted to sue because a
licensee hadn’t complied with a provision of the GPL that
requires the licensee to give recipients of the Program “a copy
of this License along with the Program.” (See GPL section 1.)
While that was technically a violation of an express GPL con-
dition, how should one calculate damages for its breach? How
much would my client have to pay his own attorneys to force
the licensee to either obey the GPL or pay damages for
infringement? And then, how should a court calculate dam-
ages for the failure to publish a license that anyone can find
instantly on the Internet? Our final problem was that, by the
time we had discovered the licensee’s failure to publish the
GPL as required, the licensee had already stopped distributing
his software. How can we calculate damages for

past

 breaches
of a license that are not ongoing?

Perhaps unfortunately for those who would welcome the
clarity of a court decision, such questions were never answered
because my client decided not to sue. No court has yet told us
how to calculate damages for breaches of open source licenses.

12_Rosen_ch12 Page 272 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

273

Answers to these questions will depend upon the specific busi-
ness and software facts of the case and upon local law.

All open source licenses—indeed, all software licenses of
any kind from commercial companies—contain limitations of
liability. This is to ensure that the maximum dollar exposure of
a party for damages due to claims by the other party is strictly
limited. (In some jurisdictions, class action lawsuits can aggre-
gate the small damages of a large number of plaintiffs into one
large claim on behalf of all members of the class; this possibil-
ity is well beyond the scope of this book.) As for the maximum
dollar exposure for such claims, all open source licenses essen-
tially contain provisions that say “no damages at all.”

Limitation of liability provisions are not enforceable in all
jurisdictions, despite what the license says. In some countries,
consumer protection policies always trump a vendor liability
disclaimer.

The limitation of liability provisions in the BSD, MIT,
Apache, GPL and OSL/AFL licenses protect only the licensor;
in the MPL and CPL, they protect both parties. Some limita-
tion of liability provisions purport to limit liability to any per-
son; see MPL section 6. It is difficult to see how such a
limitation in a license between two parties would be binding
on a third party.

So even where damages can be calculated, the limitation of
liability provision may reduce the actual recovery.

Where actual damages are difficult to calculate, statutory
damages may be prescribed by law. Statutory damages for
copyright infringement in the United States can range from
$750 to $30,000 “as the court considers just,” and in cases of
willful infringement the maximum statutory damages are
increased to $150,000. Damages are calculated for the entire
work and not for each copy made:

12_Rosen_ch12 Page 273 Thursday, June 17, 2004 11:10 AM

274

Open Source Licensing

...For all infringements involved in the action, with respect
to any one work, for which any one infringer is liable indi-
vidually, or for which any two or more infringers are liable
jointly and severally.... For the purposes of this subsection, all
the parts of a compilation or derivative work constitute one
work. (17 U.S.C. § 504.)

The prospect of collecting statutory damages often isn’t
enough to compensate for attorneys’ fees and costs. For exam-
ple, in the case I described earlier where a licensee had merely
failed to publish the license as required by GPL section 1, an
award of more than the minimum statutory damages of $750
is unlikely. After all, why would a court consider higher
amounts just under the circumstances?

Nor should a prospective litigant rely on a provision of a
license or of a statute that awards attorneys’ fees to the pre-
vailing party. Such awards are often limited to “reasonable”
attorneys’ fees, and they may also be at the discretion of the
court.

In any civil action under this title, the court in its discretion
may allow the recovery of full costs by or against any party....
Except as otherwise provided by this title, the court may also
award a reasonable attorney’s fee to the prevailing party as
part of the costs. (17 U.S.C. § 505.)

Injunctions

Usually an injunction is of far greater concern to a defen-
dant than monetary damages. An injunction is:

A court order prohibiting someone from doing some specified
act or commanding someone to undo some wrong or injury.
(Black’s Law Dictionary, 6th edition.)

12_Rosen_ch12 Page 274 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

275

Injunctions will be ordered by a court when economic dam-
ages are not adequate to compensate for the wrong. On the
other hand, courts are reluctant to issue injunctions when
monetary damages would be sufficient to redress the wrong.

Consider the financial repercussions to a company of being
ordered by a court to stop using software that has become an
essential component of that company’s processes or products.
Risks like these often make injunctions far more frightening
than monetary damages.

In the previous section I described a situation in which a li-
censee had failed to publish a copy of the GPL with his soft-
ware, in violation of GPL section 1. My client realized we
might not recover much in damages, but at least we might be
able to encourage a court to grant an injunction against any
further use by that licensee of my client’s software.

But would the court find that this was a “material condi-
tion” of the GPL whose breach could justify such a dramatic
remedy as injunction? Such questions are particularly trouble-
some for bare licenses like the GPL, because the concept of
materiality of a condition is found only in contract law

.

 One
would hope that courts would balance the equities in such sit-
uations so as to avoid terminating open source licenses for
simple breaches that can easily be cured (i.e., by simply pub-
lishing the license).

On the other hand, the threat of an injunction can often
cause licensees in breach to cure their breaches before the
court acts.

In my client’s situation, unfortunately, the licensee had
already stopped using that GPL-licensed software, so an
injunction was moot anyway. We ultimately never tested any
of our damages or injunction theories in court.

12_Rosen_ch12 Page 275 Thursday, June 17, 2004 11:10 AM

276

Open Source Licensing

Standing to Sue

Not everyone who perceives a wrong is allowed to sue to
correct that wrong. Parties to litigation must have a suitable
stake—a legally protectable and tangible interest—in the out-
come of a dispute.

Standing

 to sue deals only with the question
of whether the litigant is the proper party to fight the lawsuit,
not whether the issue itself is justiciable.

Open source licenses often elicit passionate support in the
open source community. That passion does not necessarily
translate, under the law, to

standing

. Only parties with a well-
defined legal interest in the outcome may litigate an open
source license. Even open source advocacy groups such as the
Free Software Foundation and Open Source Initiative don’t
have standing to sue to protect software freedom or to protect
software under open source licenses. Nor is the public an

intended beneficiary

 of open source licenses, despite the open
source goal to serve the public interest in software freedom. A
mere member of the public can’t sue to enforce an open source
license.

Intellectual property laws narrowly limit standing. Only the
owner of a copyright or patent may sue to enforce the copy-
right or patent. Distributors who don’t own copyrights or pat-
ents can’t sue under copyright or patent law to enforce their
contributors’ copyrights and patents, but they do have stand-
ing to enforce the copyrights and patents embodied in their
own collective or derivative works.

Since the GPL is intended by its authors to be a copyright
license but not a contract, and since there is usually no
attempt to seek assent by licensees to the terms of the GPL,
that license presumably cannot be enforced under contract
law. All the other licenses described in this book are designed
to be contracts and so the parties to those licenses can sue to

12_Rosen_ch12 Page 276 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

277

enforce them as contracts. The parties to a contract have
standing under contract law to enforce that contract. This
means that licensors and licensees can enforce their licenses
that are contracts, regardless of who owns the underlying
copyrights or patents.

Burden of Proof

Consider first what would happen in a typical licensing dis-
pute under copyright law for a bare license. (Refer to the com-
parison of bare licenses and contracts in Chapter 2.) A plaintiff
will allege that the defendant is a copyright infringer and thus
may not exercise any of the exclusive rights of the copyright
owner.

1. The plaintiff will have to prove he or she is in-
deed the copyright owner. Only the copyright
owner (or, in the United States, an exclusive li-
censee) has standing to sue to enforce the copy-
right.

2. The plaintiff has the initial burden of demon-
strating that the defendant has undertaken one
or more of the copyright owner’s exclusive rights
under the copyright law (e.g., made copies, cre-
ated derivative works, or distributed). The de-
fendant, as always, can defend him- or herself on
this issue (i.e., not everything is a derivative work
simply because a plaintiff calls it that; see the dis-
cussion of derivative works analysis later in this
chapter).

3. The defendant can assert the license as a de-
fense to infringement. In essence, the defen-

12_Rosen_ch12 Page 277 Thursday, June 17, 2004 11:10 AM

278

Open Source Licensing

dant can admit to making the copy or creating
the derivative work, but assert that the license
authorizes this action. (If the defendant admits
to the infringing acts but denies the existence of
the license, of course, the defendant is an in-
fringer.)

4. The plaintiff may then prove that the defendant
breached a condition of the license, thus render-
ing it terminated or revoked. The conditions
of the license will be interpreted by the court un-
der local law standards as appropriate for bare
licenses.

5. The plaintiff bears the burden of justifying in-
junctive relief and proving damages.

Notice that in a copyright dispute over a bare license, the
plaintiff will almost certainly be the copyright owner. If a li-
censee were foolish enough to sue to enforce the terms and
conditions of the license, the licensor can simply revoke the
bare license, thus ending the dispute. Remember that a bare
license in the absence of an interest is revocable.

It may be that bare licenses will be interpreted by the courts
under contract law principles, even in the absence of the con-
tract formalities of offer, acceptance, and consideration. After
all, major software companies around the world distribute
open source software as part of their products; those open
source licenses may be technically and economically impossi-
ble to revoke. Furthermore, in commercial dealings of any sig-
nificance worthy of being turned into litigation, there are
almost certainly other aspects of

offer,

acceptance,

 and

consider-
ation

 that can be invoked by creative lawyers as proof that a
contract was formed.

12_Rosen_ch12 Page 278 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

279

There are some important differences to this scenario if this
becomes a contract dispute, where the license has been offered
and accepted, and consideration has been paid. Now not only
does the licensor have standing to be a plaintiff regardless of
whether he or she owns the copyrights and patents, but also
the licensee has standing to be a plaintiff to enforce the terms
of the license and to prevent it from being revoked. The statu-
tory and case law of contracts (at least in the United States)
would guide the court to interpret the license and to deter-
mine whether there was breach of contract and, if so, what
damages or injunctive relief should be granted.

The remedies of copyright and patent law are fairly broad-
brush. The defendant is either an infringer or not, and must
either obey the terms of the license or see it revoked. Damages
are to be awarded as specified in the relevant copyright or
patent statute.

Contract

 remedies can be more nuanced, however, and they
may become very effective for open source license disputes.
For example, one of the more interesting remedies available for
contracts—but not for bare licenses—is “specific perform-
ance,” by which the party breaching the contract may be
ordered by the court to perform. Specific performance is not a
remedy for a dispute over a bare license.

At the end of the day, the parties to an infringement dispute
in court will often finally resolve it by drafting their own set-
tlement agreement that allows the intellectual property to be
used. Even if there was no contractual license initially, that set-
tlement agreement will be a contract and license that is
enforceable in court.

How much cheaper it would be to draft a good open source
license up front, get the parties to agree to it as a contract, and
proceed upon those agreed terms.

12_Rosen_ch12 Page 279 Thursday, June 17, 2004 11:10 AM

280

Open Source Licensing

Enforcing the Terms of a Contract

Proving breach of contract has been the subject of literally
millions of lawsuits. It would be impossible to summarize that
body of case law and statutes effectively in this book. Indeed,
contract enforcement depends in some ways on the jurisdic-
tion in which the case is brought, and most such cases are fact-
specific. I will list only the major rules that apply in many
jurisdictions:

• Courts will generally try to give effect to the
written contract of the parties. Parties are al-
lowed to agree to almost anything as long as it is
not against public policy.

• Aggrieved litigants are not allowed to back out of
contracts they made simply because the terms
are no longer to their liking. It usually doesn’t
generate sympathy if you complain after the fact
that a contract you entered with your eyes open
is now unfair.

• There are complex rules for resolving ambigu-
ities of contract language, and the courts will of-
ten try to reword such ambiguities to make the
contract enforceable. If the ambiguity is so pro-
found that the parties probably didn’t under-
stand what they were agreeing to, the entire
contract may become void. (In the absence of a
contract, remember, copyright and patent laws
remain in effect; a party who acts under author-
ity of a void license is merely an infringer.)

12_Rosen_ch12 Page 280 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

281

• There are complex rules for filling gaps in con-
tracts where the agreement is silent as to specific
matters. Commercial relationships among coun-
tries have led to the development of consistent
laws relating to the sale of goods. Whether soft-
ware is goods depends on the laws in your juris-
diction. In many cases, though, courts will make
an analogy between software licenses and con-
tracts for the sale of goods, thereby developing
case law where statutory law about software isn’t
complete.

• Contract terminology that is not defined will of-
ten be given its meaning as a term of art. In com-
plex cases, courts may rely on expert witnesses to
help them determine the effect of specific con-
tract language. Among the terms of art relevant
to software licenses are

collective work

,

derivative
work

,

copy

,

distribution, file,

 and

module

. Courts
will apply case law and statutory interpretation
processes to determine the meanings of such
terms and their effects on specific licenses and
software.

• Commercial parties are generally assumed to be
sophisticated about the contracts they enter;
they will find it difficult to argue that they didn’t
really know what they were agreeing to. Individ-
ual consumers, on the other hand, are not so-
phisticated; they probably didn’t even read or
understand the consequences of software licen-

12_Rosen_ch12 Page 281 Thursday, June 17, 2004 11:10 AM

282

Open Source Licensing

ses they “agreed” to. Courts may protect individ-
ual consumers from unfair license conditions
where they wouldn’t bother to protect a sophis-
ticated company whose lawyers reviewed (or
should have reviewed) the licenses.

• Courts sometimes refuse to enforce specific pro-
visions of contracts against ordinary consumers,
particularly if those provisions are excessive bur-
dens on unsophisticated licensees. For example,
arbitration clauses, broad warranty and liability
disclaimers, and biased selection of jurisdiction,
venue, and governing law may not be enforced
against naive licensees. No court case has yet
tested whether a reciprocity provision can be as-
serted against an unsophisticated licensee, al-
though big software companies can be presumed
to know what those provisions mean.

I recognize that these guidelines don’t provide much real
guidance for anyone who is considering suing for breach of
contract or who fears having to defend against such a lawsuit.
Fortunately, the open source community is not particularly
litigious. Licensors give away so many copyright and patent
rights that there’s very little left of value worth suing over. And
licensees obtain almost everything they need to profit from the
software, so there’s very little incentive to sue. Without dam-
ages, lawsuits aren’t needed.

Nevertheless, licensees should be diligent in respecting the
intellectual property rights of contributors. Honor all the
terms and conditions. Little things often matter deeply to
open source licensors. For example, if a license requires that
you make available a copy of the license or of the source code

12_Rosen_ch12 Page 282 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

283

when you distribute the software or its derivative works, do so.
The open source community generally believes that such
license terms are really worth fighting over, so avoid such
fights by obeying the license terms and conditions.

Disputes over Ownership of Intellectual Property

Licensors can only license software which they own or
which they have received permission to license. That basic
legal requirement is explicitly acknowledged in the OSL/AFL
by the warranty of provenance and in the MPL and CPL by
their representations. (OSL/AFL section 7; MPL section
3.4[c]; CPL section 2[d].) All open source licenses, regardless
of their explicit language, at least imply that the software is
being licensed under the authority of its copyright owner. A
licensor who fails to abide by that implied or explicit promise
can be guilty in some jurisdictions of fraud or gross negli-
gence, regardless of warranty disclaimers.

A contributor who submits a contribution he or she doesn’t
own might be forced to pay damages to cover the cost to
replace the infringing contribution or to buy a valid license
from its rightful owner.

Companies that make contributions to open source projects
are assumed to be sophisticated enough to take responsibility
for the software they contribute. But sometimes employees
make contributions that their employers do not approve or
allow. That is really a dispute between the employee and his or
her employer. Recipients of such unauthorized contributions
may allege negligent supervision if employers fail to supervise
properly their employees’ participation in open source devel-
opment.

This means that companies that participate in open source
development should document their procedures and policies

12_Rosen_ch12 Page 283 Thursday, June 17, 2004 11:10 AM

284

Open Source Licensing

to their employees. Attorneys should review those procedures
and policies to protect companies’ intellectual property.

Recipients of open source software under apparently valid
licenses may suddenly find their software challenged by third
parties claiming ownership rights. This is in part what hap-
pened in the SCO

vs

. IBM litigation, where SCO claimed that
IBM had no authority to license certain software under the
GPL, software that ended up in Linux. Open source is not
unique in this respect; such ownership disputes can also occur
with proprietary software. Licensees are not direct parties to
those intellectual property ownership disputes, although their
licenses might ultimately be affected by the outcome.

There is little that downstream licensees can do in advance
to avoid third party claims to intellectual property against
their licensors. Some licensors are now offering to indemnify
their customers against such claims, although any indemnifi-
cation paid will often be worth far less than the infringing
software those customers can no longer use.

When third parties prove their valid claims to ownership of
open source software, only one response is appropriate: The
software may no longer be used without a license from the
true owner. Open source licensing depends on intellectual
property law, and it would be hypocritical of open source dis-
tributors and customers to dishonor those laws by copying
software to which they no longer have a license.

Disputes over Derivative Works

I left for last the most difficult legal question facing the
open source software industry: What is a “derivative work” of
software?

If an open source license doesn’t have a reciprocity condi-
tion, derivative works simply don’t cause problems. You can

12_Rosen_ch12 Page 284 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

285

safely ignore this topic entirely if you license software under an
academic open source license.

Early in this book I explained the complex problem of sepa-
rating expressions from ideas, art from science, and right brain
from left brain creations. To determine whether a software
program is a derivative work of another software program,
the courts need to disentangle these abstractions. The pro-
cedure that many courts use, called the

abstraction-filtration-
comparison

 test, is described below.
I previously took the easy way out. I said that you should

treat derivative works as subsequent versions of an earlier
work. But that easy way out no long suffices; works resemble
each other in many subtle ways. For example, Microsoft Excel
2002 is probably a derivative work of Microsoft Excel 2000,
but is it a derivative work of Lotus 1-2-3? Of Visicalc? Is Linux
a derivative work of UNIX? Is the implementation of software
conforming to an industry standard a derivative work of that
specification? How much copying of source code is required to
create a derivative work? How much copying of source code
may you legitimately do before you create an infringing deriv-
ative work? Does linking create a derivative work?

These questions are important to some licensees because
they want to avoid the reciprocity conditions of open source
licenses, and they are important to licensors because they want
to enforce those reciprocity conditions. Disputes over whether
particular software is a derivative work of licensed software,
and thus subject to reciprocity, are inevitable.

A derivative work, you will recall, is a work based upon a
preexisting work. The preexisting work is modified, translated,
recast, transformed, or adapted so as to create an improved (or
at least different) derivative work. (17 U.S.C. § 101.)

In theory, different copyrightable works, including soft-
ware, can be compared to determine whether one is a deriva-

12_Rosen_ch12 Page 285 Thursday, June 17, 2004 11:10 AM

286

Open Source Licensing

tive work of the other. This may involve a comparison of the
source code or the object code, depending upon the facts of
the specific case.

Expert assistance may be needed. We may have to perform
reverse translation or automated source code comparisons to
identify similarities between two programs for presentation to
a court. If we only have object code, we may have to compare
object code versions or reverse-compile the software to create
easy-to-read versions. This first step is itself complicated,
because the parties to the dispute have to reduce the software
similarities to simple constructs that can be recognized by
nontechnical judges and juries.

In the simple case, two programs can be set side by side and
their source code compared. A program that is substantially
similar to a preexisting program is likely to be a derivative
work. That is because such similarities rarely occur by coinci-
dence, at least for substantial portions of the source code. But

substantial similarity

 (a term of art in copyright litigation) is
not enough to identify a derivative work.

Some similarities relating to the basic functioning of com-
puter systems (e.g., subroutine entry and exit code, external
interfaces) can occur by coincidence or intentionally because
“that’s the way computers have to work.” Some snippets of
software may be too small and ordinary to be copyrightable. In
other cases program functions are coded in a particular way
because that is the only (or most effective, or the industry
standard) way to implement that specific function on that par-
ticular computer architecture. Such source code must be
excluded from the comparison because it is not entitled to
copyright protection; instead, it is idea that has merged into
expression, and is thereby rendered uncopyrightable.

In practice, comparing two works of software is not as sim-
ple as a byte-by-byte or line-by-line scan. Software is often

12_Rosen_ch12 Page 286 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

287

extensively modified between versions. Entirely new coding
techniques, programming languages, and interface designs can
make software appear to be very different at the source code
level even when it is derived from an earlier version. Higher
levels of abstraction may be needed to identify the similarities.

At those higher levels of abstraction, copyright protection:

• DOES NOT extend to any ideas, procedures,
processes, systems, methods of operation, con-
cepts, principles, or discoveries contained in the
original program.

• MAY extend beyond the literal code of a pro-
gram to its nonliteral aspects, such as its architec-
ture, structure, sequence, organization,
operational modules, and computer user inter-
face.

These more abstract similarities are not always obvious to
the naked eye; identifying them often requires expert guid-
ance. In any event, once the noncopyrightable similarities are
filtered out, only the remaining copyrightable similarities are
compared. Substantial similarity of the copyrightable elements
is evidence of copyright infringement, but substantial similar-
ity of the noncopyrightable elements means nothing at all.

In Chapter 6, in the context of the GPL, I described the
arguments that have raged in the open source community
about whether linking between programs creates a derivative
work. Nothing in the law of copyright suggests that linking
between programs is a determinative factor in derivative work
analyses by courts—except perhaps as evidence of one of the
abstract, nonliteral, copyrightable aspects of the software, such
as program architecture, structure, and organization.

12_Rosen_ch12 Page 287 Thursday, June 17, 2004 11:10 AM

288

Open Source Licensing

In such cases, the burden usually rests on the licensor to
explain to the court why the simple interaction of software
modules—black boxes merely plugged into other software—
creates a derivative work of the black boxes. Merely combining
black boxes, I suggested earlier, creates collective works, not
derivative works.

Substantial similarities, standing alone, are never enough to
characterize a derivative work. An independent creation is not
a derivative work no matter how much it resembles a preexist-
ing work. Copyright only protects against copying, not against
someone writing the same expression independently, by coin-
cidence. So plaintiffs may still have to prove actual copying.

Evidence can sometimes be provided by a plaintiff to show
that an alleged infringer had access to the preexisting work and
an opportunity to copy it. For open source software, proving
access and opportunity is relatively easy because the source
code is published. The burden of proof then may shift to the
defendant to show that the substantial similarities were an
accidental byproduct of independent creation.

In practice, most infringing derivative works of software are
blatant and not subtle because it usually takes more time to
obscure an infringing work than to just write it anew from
scratch. Nevertheless, when defendants intentionally set out to
hide their copyright infringement, it can be difficult to prove.

Such extreme efforts to cheat open source software licensors
by pretending not to have created derivative works is usually a
waste of time. It is often less expensive just to write equivalent
software from scratch. Why risk creating software with ques-
tionable provenance? It may result in an expensive infringe-
ment lawsuit—which you may lose. If you try to sell such
software, your customers may reject it as risky even though it
is not actually proven to have infringed.

12_Rosen_ch12 Page 288 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

289

The better plan is not to tread too close to the line separat-
ing collective and derivative works. Companies that create
software should make sure their employees don’t have access to
preexisting software, and they should train their employees not
to copy other software.

Instead of accepting the risk that their software will be
called a derivative work, companies sometimes prefer to refuse
software under licenses containing reciprocity obligations.
Such software may then be available under dual licensing
options, such as the ones described in Chapter 11.

Instead of avoiding the creation of derivative works, there’s
a more principled argument to be made that it is a public ben-
efit to create derivative works and to distribute them under
reciprocal open source licenses. That way everyone can profit
from improvements to software.

Contributions to the software commons are always wel-
comed. So I encourage you to take a very broad view of your
reciprocity obligations; don’t be stingy about them. Contrib-
ute as many of your derivative works as possible to the com-
munity.

Patent Infringement Litigation

Patent infringement claims usually appear unexpectedly.
They are serious matters, expensive, and potentially very dam-
aging. When faced with a claim of infringement, you should
consult an attorney. Fighting patent infringement litigation on
your own is foolish.

You can’t prevent patent infringement lawsuits, but your
licenses can help you defend against them. Some open source
licenses have very strong patent defense provisions (e.g., GPL
section 7, MPL sections 8.2 and 8.3, CPL section 7, OSL/
AFL section 10). These defensive termination provisions act

12_Rosen_ch12 Page 289 Thursday, June 17, 2004 11:10 AM

290

Open Source Licensing

by increasing the cost of suing an open source licensor for
patent infringement. If the licensed software has value to the
patent owner, he or she may prefer to forgo a patent infringe-
ment lawsuit rather than lose the license to the software.

Defensive termination provisions help protect open source
licensors from infringement lawsuits by their own licensees.
But there is no possible license provision that can protect a
licensor—or anyone else—from lawsuits by third parties who
are not licensees.

A collective approach to patents can also be helpful to
encourage open source and proprietary software development.
That is why companies cooperate, within the limitations of
the antitrust law, to develop industry standards that are unen-
cumbered by patents. The important role of open standards
for the success of open source is the topic of the next and final
chapter of this book.

SCO

vs

. Open Source

Anyone who has read the earlier section on standing will
quickly recognize the incongruity of the title “SCO

vs

. Open
Source.” SCO is shorthand for The SCO Group, Inc., a Dela-
ware corporation.

Open source

 is a software development, busi-
ness, and licensing model. Open source does not have
standing to be a defendant in a lawsuit. Neither SCO, nor any
other plaintiff, can sue an entire movement—particularly one
that is so thoroughly grounded in intellectual property and
contract law—over any cause of action worth litigating.

As this is written, The SCO Group is a party to several ran-
corous lawsuits against certain specific software companies,
including IBM, Novell, and Red Hat, over intellectual prop-
erty rights in the flagship open source product, Linux.

12_Rosen_ch12 Page 290 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

291

Initially, SCO’s complaint alleged that it had licensed certain
proprietary software to IBM and that IBM had then improperly
contributed that software to open source Linux. The original
lawsuit was framed in traditional breach of contract terms as a
dispute over an agreement between IBM and SCO that purport-
edly required IBM to maintain the trade secret status of certain
software licensed to it by SCO. IBM denied all material allega-
tions and then, in turn, cross-complained against SCO, alleging
breach of contract and patent infringement. SCO has since
broadened its complaint to include allegations about the GPL
under which Linux is licensed.

Then Red Hat sued SCO, alleging unfair business prac-
tices, among other business torts. Finally, SCO and Novell dis-
puted the terms of the original contract under which SCO’s
predecessor-in-interest bought certain rights to UNIX from
Novell.

The SCO litigation may be resolved by the time you read
this book, in which event use the following opinion as a way
of evaluating my prescience: The SCO cases are a legal mess,
an unfortunate opportunity for companies to spend millions
of dollars in attorneys’ fees to defend their intellectual prop-
erty and contractual rights and to argue about enormous dam-
age claims. But they don’t directly affect open source. All the
licenses described in this book and all the software licensed
under those licenses—with the possible exception of some
small portion of Linux—will remain valid no matter what
happens in the SCO lawsuits. As to that small portion of
Linux, it may turn out after litigation to be no portion of
Linux at all.

Like any other person, SCO has rights only to copyright-
able works that it authored or acquired by assignment or
license. The independently created copyrightable works of
others, such as the contributions to Linux by Linus Torvalds

12_Rosen_ch12 Page 291 Thursday, June 17, 2004 11:10 AM

292

Open Source Licensing

and thousands of other programmers worldwide, are not
owned by SCO. Nor can SCO own the unpatented ideas
embodied in Linux. Given what I know about the history and
evolution of operating systems (including UNIX and Linux),
it is inconceivable to me that significant portions of Linux are
copies or derivative works of any SCO software. Most Linux
experts reassure me that, when the dust of this litigation set-
tles, the courts will determine that SCO owns little or nothing
of the intellectual property in Linux.

The SCO lawsuit reveals some interesting open source iro-
nies. SCO itself distributed Linux open source software and,
even after SCO had filed its first complaint against IBM, li-
censees could still obtain Linux under the GPL from an SCO
website. I’m not aware of any important case—and Linux soft-
ware is

important

 in this sense—where commercially sophisti-
cated licensors have been allowed to disavow their own licenses
for the very software under dispute.

SCO’s public arguments challenging the constitutionality
of the GPL are particularly intriguing. (See the Open Letter
from Darl McBride, president and CEO of SCO, dated
December 4, 2003.) It would be truly exciting news if U.S.
courts allowed a company to challenge the constitutionality of
its own license.

But suppose the courts finally do step back from this entire
open source phenomenon and ask, in the context of a legiti-
mate lawsuit by parties with standing: “Is this licensing
scheme to build a commons of open source software constitu-
tional? Should licensors be allowed to turn copyright on its
head this way, conditioning a license to software on a recipro-
cal obligation to contribute?”

There is absolutely no legal basis to argue that this scheme is
unconstitutional. It is a basic legal principle that licensors can

12_Rosen_ch12 Page 292 Thursday, June 17, 2004 11:10 AM

12 • Open Source Litigation

293

do what they wish with their intellectual property and set con-
ditions for its use.

The public excitement about the SCO cases proves the
point I’ve hinted at throughout this chapter. Litigation about
open source software will be rare; if it were a common occur-
rence the public would be bored with the rather hysterical
SCO litigation claims by now. The uniqueness of the SCO lit-
igation, and its multi-billion dollar damage claims, makes it
stand out.

The SCO litigation against Linux also marks a maturation
of the open source movement, which is finally a big enough
phenomenon for its software to be the object of a big lawsuit.
Put simply, open source software is now important enough to
sue over. The popularity and success of open source software
and of Linux in particular inevitably draw litigation because
there are important and valuable economic interests at stake.

The SCO litigation is an aberration. It is a big lawsuit about
what most knowledgeable attorneys believe is a small issue
between particular companies. It will eventually be resolved—
and Linux and open source will continue to evolve. This too
shall pass.

Many open source advocates have secretly longed for test
cases so that the courts can clearly articulate the laws of open
source licenses. There have thus far been very few such cases.
Open source parties argue mostly about breach of contract,
trademark infringement, occasionally patent infringement,
and whether a derivative work has been created. Most such
arguments are resolved informally, as is true for almost all
commercial disputes in most civilized countries. Why would
open source licensors and licensees sue each other if they can
work out differences in a spirit of open source generosity?

It is difficult to imagine an important case where open
source licensors and licensees will litigate about free software.

12_Rosen_ch12 Page 293 Thursday, June 17, 2004 11:10 AM

294

Open Source Licensing

As long as open source projects act as responsible custodians of
intellectual property, keeping careful track of the software they
receive and the software they create, then licensees can rely on
the continued availability of that software under open source
rules. And as long as licensees honor the conditions of the
licenses for software they accept, there is little reason to fear it
will be taken away through litigation.

12_Rosen_ch12 Page 294 Thursday, June 17, 2004 11:10 AM

