
2020 Linux Kernel
History Report
v5.8 A Publication of The Linux Foundation | August 2020

Signed-off-by: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Daniel M German <dmg@uvic.ca>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Corbet <corbet@lwn.net>
Reviewed-by: Konstantin Ryabitsev <konstantin@linuxfoundation.org>
Reviewed-by: David A. Wheeler <dwheeler@linuxfoundation.org>
Reviewed-by: Jason Perlow <jperlow@linuxfoundation.org>
Reviewed-by: Steve Winslow <swinslow@linuxfoundation.org>
Reviewed-by: Mike Dolan <mdolan@linuxfoundation.org>
Reviewed-by: Craig Ross <ccr@linuxfoundation.org>
Reviewed-by: Alison Rowan <arowan@contractor.linuxfoundation.org>

www.linuxfoundation.org

Contents

Summary 3

Introduction 4

Kernel Archeology 5

Impact of Development Process Best Practices 7

Adoption of Maintainer Hierarchy 8

Version Control Systems 9

Removing Unused Code 12

Highly Diversified Corporate Contributors 13

Tagging and adoption of the Developer Certificate of Origin 15

Release Model with Predictable Release Cycle Cadence 17

Improving Automated Testing the Kernel 18

Stable Release Process 19

Longterm Release Kernels 20

Conclusion 21

References 23

Summary
With the 5.8 release tagging on August 2, 20201, and
with the merge window for 5.9 now complete, over a
million commits of recorded Linux Kernel history are
available to analyze from the last 29 years. This report
looks back through the history of the Linux kernel and
the impact of some of the best practices and tooling
infrastructure that has emerged to enable one of
the largest software collaborations known. The 5.8
kernel set several records2, so there are no signs of
development slowing down.

https://lore.kernel.org/lkml/CAHk-=wj+mDPbj8hXspXRAksh+1TmPjubc9RNEbu8EVpYyypX=w@mail.gmail.com/
https://lwn.net/Articles/827735/

Introduction
Over the last few decades, we’ve seen Linux steadily
grow and become the most widely used operating
system kernel. From sensors to supercomputers, we’re
seeing it used for launching rockets, automobiles,
smartphones, watches, and many more devices in our
everyday lives. Since the Linux Foundation started
publishing the Linux Kernel Development Reports in
20083, we’ve observed progress between points in time.

However, we haven’t been able to share the full scope
of development since that first release in 1991. Since
that original release, Linux has become one of the
most successful collaborations in history, with over 20
thousand contributors over the 29 years, and over a
million commits as of August 2020. Given the recent
announcement of 5.8 release as one of the largest yet,
there’s no sign of it slowing down, with the latest release
showing a new record of over ten commits per hour2.

In this report, we’re going to look at Linux since the first
release on September 17, 1991, to August 2, 2020. This
historical analysis is possible thanks to the efforts of
Dr. Daniel German and his work on the tool cregit4, 5.
With this tool, we can look back to the first release on
September 17, 19916, and see the kernel commits’ history
at the token level by contributors up to the latest 5.8
release on August 2, 2020. Using cregit, we have been
able to connect the three different development stages

of Linux development: pre-version control, BitKeeper,
and Git. During the pre-version control stage, we
use each of the releases of Linux as a snapshot of
its development. This stage lasted from September
1991 until February 4, 2002. February 4, 2002, is when
BitKeeper started being used and marks the start of
the commit history for the Linux kernel. The current
version control system, Git, started being used on
April 16, 2005. The development histories of these
three stages were connected, allowing us to track the
evolution of kernel source code7.

Git can track the evolution of Linux at the line level.
Using Git, one can identify the change that introduced
or last changed any line of code. Using cregit, it was
possible to track the evolution of the kernel at the
token level. A token of a source code program is the
smallest individual element of a program (a token
in programming is similar to the concept of word in
human languages). Hence, it was possible to track, for
every token in each line, who and when introduced it.

When linux-0.01.tar.Z kernel was released, it
consisted of 88 files and 10,239 lines of code and ran on
a single hardware architecture, i3868. Today, the v5.8
release consists of 69,325 files and 28,442,673 lines of
code (which corresponds to 110,354,844 tokens), and
it runs on over 30 major hardware architectures9.

The Linux Foundation 42020 Linux Kernel History Report

https://www.linuxfoundation.org/publications/2008/04/linux-kernel-development-report-2008/
https://lwn.net/Articles/827735/
https://cregit.linuxsources.org/
https://github.com/cregit/cregit
https://github.com/dmgerman/linux-pre-history/commit/9417d4148f0ddc5ee2cc1114ce97c71c5e4cb4b7
https://archive.org/details/git-history-of-linux
https://repo.or.cz/davej-history.git/commit/bb441db1a90a1801ef4e6546417a8d907c55d92f

Kernel
Archeology
In Linus’s note about the statistics on that first release8,
the initial release is summarized as “It’s 88 files
with about ten thousand lines, written by
yours truly except for the vsprintf routine
which was co-written with Lars Wirzenius.”
When looking at the vsprintf file today, it’s one of the
few files with source code from that first commit.

2,964 tokens can be traced back to 1991 that can still be
found in the 5.8 kernel. In fact, tokens remain in the 5.8
kernel from every year since then. Table 1 shows the
breakdown of the year in which tokens were introduced
that are still in the kernel today.

Source: https://cregit.linuxsources.org/code/5.8/lib/vsprintf.c.html

The Linux Foundation 52020 Linux Kernel History Report

https://repo.or.cz/davej-history.git/commit/bb441db1a90a1801ef4e6546417a8d907c55d92f
https://cregit.linuxsources.org/code/5.8/lib/vsprintf.c.html

Year # of Tokens Proportion Accumulated

1991 2,964 0.00% 0.00%

1992 30,740 0.03% 0.03%

1993 46,910 0.04% 0.07%

1994 38,443 0.03% 0.11%

1995 95,498 0.09% 0.19%

1996 204,573 0.19% 0.38%

1997 370,193 0.34% 0.72%

1998 436,941 0.40% 1.11%

1999 775,706 0.70% 1.81%

2000 1,469,450 1.33% 3.15%

2001 828,530 0.75% 3.90%

2002 2,475,002 2.24% 6.14%

2003 1,310,598 1.19% 7.33%

2004 2,023,705 1.83% 9.16%

2005 2,575,195 2.33% 11.49%

2006 2,449,966 2.22% 13.71%

2007 3,118,829 2.83% 16.54%

2008 4,410,921 4.00% 20.54%

2009 5,461,240 4.95% 25.49%

2010 4,805,525 4.35% 29.84%

2011 5,859,906 5.31% 35.15%

2012 6,072,494 5.50% 40.65%

2013 6,440,436 5.84% 46.49%

2014 6,091,508 5.52% 52.01%

2015 8,968,298 8.13% 60.14%

2016 7,622,786 6.91% 67.04%

2017 11,028,463 9.99% 77.04%

2018 9,248,269 8.38% 85.42%

2019 10,843,056 9.83% 95.24%

2020* 5,248,662 4.76% 100.00%

Table 1. Year of Origin of Tokens in Linux v5.8 *as of 8/2/2020

Kernel v5.8 codebase broken down by year of code contribution

As Table 1 illustrates, over half of the code in the 5.8
kernel was written in the last seven years, but traces
exist from all the prior years contribute to the code in
version 5.8 even today.

The Linux Foundation 62020 Linux Kernel History Report

Impact of Development Process
Best Practices
In 2015, The Linux Foundation’s Core Infrastructure
Initiative (CII) program introduced a best practices
badge for open source projects to publicly determine
their software development and security practices10.
The Linux kernel was one of the first projects to get a
badge. As time has evolved, additional practices have
been identified, and these were incorporated into
higher badge levels for projects to strive for11. In June
of this year, the Linux kernel joined the small handful
of projects with a gold badge, the top badge level12.
This is a visible recognition of what’s been there for a
long time now; the Linux kernel community continues
to lead on establishing best practices in the areas of
software engineering and secure development at scale.

The kernel maintainers meet in person every year
(except this one) at the Maintainer Summit to discuss
how to improve their ways of working together. Topics
for the summit are determined by developers raising
them on the ksummit-discuss mailing list13. After
a healthy discussion, those that aren’t resolved are
selected to be discussed in person. These meetings are
vital to the continuous improvement of the processes
that the community follows. Over time there has been
a steady growth in the number of contributors and
commits to the kernel each year. While it is not easy
to quantify the impact of these process improvement
meetings, they are likely a positive factor.

Contributors to the Linux Kernel per Year Commits to the Linux Kernel per Year

The Linux Foundation 72020 Linux Kernel History Report

https://www.linuxfoundation.org/blog/2020/06/why-cii-best-practices-gold-badges-are-important/
https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://lore.kernel.org/ksummit-discuss/

Adoption of Maintainer Hierarchy
One of the best practices that have helped the kernel
scale over time is the adoption of a maintainer hierarchy.
If we look back through the kernel release archives, the
first instance of the MAINTAINERS file was committed
as part of v1.3.68 in January 199614. The file was only
107 lines long, and there were three maintainers listed,
Alan Cox, Jon Naylor, and Linus Torvalds. That version
of the MAINTAINERS file ends with:

REST:
P: Linus Torvalds
S: Buried alive in email

In trying to understand the discussions that led to
the formation of this file, early Linux development
mailing lists were consulted. Unfortunately, only partial
records of the discussions are publicly available before
1997, as Linux development took place across multiple

mailing lists and USENET groups. Before the linux-
kernel mailing list was hosted on vger.kernel.org,
it was at vger.rutgers.edu, which was only one of a
number of the lists where the discussions occurred,
with significant discussions still on USENET. One archive
source is http://lkml.iu.edu/hypermail/linux/
kernel/, containing linux-kernel mailing list (“LKML”)
archives going back to 1995, but even it contains some
key gaps. If anyone reading this has access to early
Linux discussion threads, please reach out to the lore.
kernel.org administrators15 so we can add more early
development discussions to the archives16.

In contrast, today’s v5.8 MAINTAINERS file is now 19,033
lines long and has 150117 maintainers listed18. The v5.8
MAINTAINERS file ends with:

THE REST
M: Linus Torvalds <torvalds@linux-foundation.org>
L: linux-kernel@vger.kernel.org
S: Buried alive in reporters
Q: http://patchwork.kernel.org/project/LKML/list/
T: git git://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git
F: *
F: */

As the number of maintainers has increased, the
number of email messages on LMKL has increased as
well, but it is no longer mentioned as a problem by
Linus, at least.

Emails on LKML per Year

The Linux Foundation 82020 Linux Kernel History Report

https://repo.or.cz/davej-history.git/commit/8bf26ec84e6362618e1abe641ac7f026c2674372
http://vger.kernel.org
http://vger.rutgers.edu
http://lkml.iu.edu/hypermail/linux/kernel/
http://lkml.iu.edu/hypermail/linux/kernel/
https://www.kernel.org/lore.html
https://korg.docs.kernel.org/lore.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/MAINTAINERS?h=v5.8.2

Version Control Systems
The version control system choice selected has had
a significant impact on the community’s ability to
collaborate. This was a topic of much frustration in the
early 2000s and spurred the break from kernel work
and creation of Git by Linus Torvalds19. It’s been over
15 years since Git development began on April 10,
2005, and it’s proven to be very effective not only for
the kernel community but also for many other projects.

Before BitKeeper’s use, we lacked transparency as to
who was contributing, the number of contributions,
and the paths the contributions flowed through. For
this report, the commit history is considered to have
started in 2002. Prior to that, we have the release
history stored at Linux Kernel Historic Tree20 and Dave
Jones’ history.git21 to identify the earlier release
information. The CREDITS file in v1.0 gives a listing of
the early contributors, some of whom are still familiar
names today22.

There was a significant increase in the number of visible
commits and the number of contributors occurring
each year after the initial transition to BitKeeper. Then
it’s been steady growth after the transition to using Git
for version control.

Since the version control system was changed from
BitKeeper to Git, there’s been a steady increase in the
number of contributors and commits each year as well.

Year Version
Control System Commits Contributors

2002 BitKeeper 15,474 497

2003 BitKeeper 18,609 609

2004 BitKeeper 22,520 882

2005 BitKeeper/Git 23,553 1,372

2006 Git 29,256 1,788

2007 Git 33,761 1,928

2008 Git 48,851 2,304

2009 Git 52,576 2,593

2010 Git 49,809 2,734

2011 Git 56,405 2,806

2012 Git 65,432 2,950

2013 Git 70,966 3,167

2014 Git 75,650 3,580

2015 Git 75,827 3,817

2016 Git 77,041 3,840

2017 Git 80,826 4,175

2018 Git 80,097 4,168

2019 Git 82,371 4,249

Table 2: Commits and Contributors over time.

The Linux Foundation 92020 Linux Kernel History Report

https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/
https://repo.or.cz/davej-history.git
https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/commit/?h=1.0&id=13f97bf0ff18e367f94a5ebcf6e89998ecedb80f

commit 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2

Author: Linus Torvalds <torvalds@ppc970.osdl.org>

Date: Sat Apr 16 15:20:36 2005 -0700

Linux-2.6.12-rc2

Initial git repository build. I’m not
bothering with the full history, even
though we have it. We can create a separate
“historical” git archive of that later if we
want to, and in the meantime it’s about 3.2GB
when imported into git - space that would
just make the early git days unnecessarily
complicated, when we don’t have a lot of
good infrastructure for it.

Let it rip!

source: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?h=v2.6.12-rc2&id=1da177e4c3f41524e886b7f1b8a
0c1fc7321cac2

When the first kernel report was published in 20083,
Figure 3 in that original report showed the changes per

hour for the releases from 2005 to 2008. The report
showed an average of 2 commits per hour for the 2.6.12
release 15 years ago in May of 2005. Fifteen years later,
the average for 2019 is 9.4 commits per hour in the
kernel for the last year. With the latest 5.8 kernel, the
average was 10.7 commits per hour.

Having the right tool for the task has made a difference!

While it is not always possible to identify the gender
of the contributors to the Linux Kernel, the data we
have suggests a slight improvement in the diversity of
contributors in recent years.

At the end of 2019, we see that 8.5% of the contributors
were estimated to be female. And as a portion of
the overall contributors, the percentage of female
contributors has been increasing over time.

To identify the gender of contributors, we used
GenderComputer23 developed by researchers at the
Eindhoven University of Technology and Carnegie
Mellon University. When considered against the total
contributors to the kernel though, there is still clearly
room for the kernel for improving the gender diversity
of participants.

The Linux Foundation 102020 Linux Kernel History Report

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v2.6.12-rc2&id=1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v2.6.12-rc2&id=1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v2.6.12-rc2&id=1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
https://www.linuxfoundation.org/publications/2008/04/linux-kernel-development-report-2008/
https://github.com/tue-mdse/genderComputer

The Linux Kernel community members continue to look
for ways to improve the diversity of contributors, and
it has been a topic at past Kernel Summits24. Kernel
developers volunteer their own time to mentor new
developers participating in programs like Outreachy25,
and the Linux Foundation’s Kernel Mentorship(LKMP)
program26. LKMP is part of the mentorship program
on CommunityBridge27 which has been helping
developers new to open source to experiment, learn,
and contribute to open source communities. It has
ultimately helped them connect with experts in open
source communities as well as employers. The program
is designed to build a healthy ecosystem around the
open source software we all care about and rely on by
funding projects, securing code, and connecting with
talented developers from diverse backgrounds.

We at the Linux Foundation have also been reaching
out to new women contributors asking for suggestions
for improving the materials and guidance available to
new contributors. A few takeaways from the feedback:

•	Online resources are inadequate or outdated and
require updates.

•	More FAQs on subsystems patch submission
guidelines will be helpful.

•	More FAQs or blogs on best practices for
contributing to Linux Kernel will be helpful.

•	Communication about patch acceptance status can
be improved.

•	More beginner-friendly courses and videos such as
Shuah Khan’s LFD10328 and Greg Kroah-Hartman’s
“Write and Submit your first Linux kernel Patch”29
are helpful for students with limited resources.

% of Contributors to Linux Kernel that are Estimated to be Female

Estimated Female Contributors to the Linux Kernel per Year

The Linux Foundation 112020 Linux Kernel History Report

https://lwn.net/Articles/662911/
https://www.outreachy.org/
https://wiki.linuxfoundation.org/lkmp
https://communitybridge.org/
https://training.linuxfoundation.org/training/a-beginners-guide-to-linux-kernel-development-lfd103/
https://www.youtube.com/watch?v=LLBrBBImJt4

Removing Unused Code
As one would expect, as the number of commits
has been increasing over time, the kernel has been
growing in terms of the number of files and lines of
code. It is important to remember, though, that each
kernel build only incorporates a fraction of the source
code’s possible files. As Greg Kroah-Hartmann notes
in his blog “An average laptop uses around 2 million
lines of kernel code from 5 thousand files to function
properly, while the Pixel phone uses 3.2 million lines of
kernel code from 6 thousand files due to the increased
complexity of a SoC.”30

There is a continual focus to remove unused code
and files, but as more features and infrastructure
are added, the number of files continues to increase
overall. In looking at the files in the kernel over time,
there are releases (like v4.17 in 2018 where eight
architectures were removed, and ~180,00 lines were

removed31) where significant pruning is done that it can
be detected in the trend lines.

In a similar manner to the files, the lines of code that
make up the kernel have continued to increase. There’s
more than just the source code, though; comments
are important for understanding as are blank lines for
keeping it readable. The following table shows the lines
of code, comment, and blank lines have been calculated
by cloc32.

From prior work done by Daniel German, each line
of code is, on average, about seven tokens, and the
number of lines of code tracks the total number of
tokens very closely over time33.

Number of Files in the Linux Kernel Lines of Code & Comments

The Linux Foundation 122020 Linux Kernel History Report

http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://lwn.net/Articles/756031/
https://github.com/AlDanial/cloc
https://doi.org/10.1007/s10664-019-09704-x

Highly Diversified Corporate Contributors
The Linux Kernel has attracted a wide range of
organizations contributing to it over the years. From
looking at the commit data from Git, we see that we
have a very long tail of organizations contributing to
the kernel. From 2007 to 2019, there were 780,048
commits accepted into the Linux kernel from 1730
organizations. The top 20 organizations listed below
accounted for 68% of the commits, and there is a long
tail of companies that only made a single commit. The
top 20 committers are at left.

In these tables and graphs, the label of “(Unknown)”
are those patches for which a supporting employer’s
existence could not be determined. When “None” is
used, it indicates the patches from developers known
to be working on their own time. This convention is
used in the gitdm tool34 that was used to generate
these tables and was initially documented in the
statistics about the 2.6.20 release35.

Number of Companies Committing to Linux per Year

Organization # of Commits
2007–2019 %

None 93,225 11.95%

Intel 78,068 10.01%

Red Hat 69,443 8.90%

(Unknown) 31,919 4.09%

IBM 29,538 3.79%

SUSE 27,239 3.49%

Linaro 24,740 3.17%

(Consultant) 23,081 2.96%

Google 21,779 2.79%

Samsung 20,160 2.58%

AMD 17,781 2.28%

Renesas Electronics 15,542 1.99%

Texas Instruments 13,855 1.78%

Oracle 13,295 1.70%

Broadcom 9,572 1.23%

Huawei Technologies 9,379 1.20%

Mellanox 9,267 1.19%

NXP Semiconductors 9,223 1.18%

Arm 7,646 0.98%

Linux Foundation 6,109 0.78%

Table 3: Top 20 Committers

The Linux Foundation 132020 Linux Kernel History Report

https://lwn.net/Articles/222773/

For the last ten years, we’ve seen over 400 organizations
contributing to the Linux kernel each year. A significant
number of these may only ever submit one commit.
Looking at where the percentage of each year’s commits
come from, long tail accounts for about one-third of all
the commits (labeled as “Others” in the chart at left).

Over time, contributions from companies vary based
on business needs and strategies. Some of the top 20
contributors had not even contributed to the kernel
back in 2007. Others who were strong contributors
in 2007, have since been bought/acquired and are no
longer participating. The diversity of contributors has
been a strength and continues to provide resilience to
the project.

Percentage Linux Commits by Company per Year

Linux Kernel Commits by Company (cumulative)

The Linux Foundation 142020 Linux Kernel History Report

Tagging and adoption of the Developer Certificate of Origin
One of the other key process changes in the history
of the Linux kernel was the standardization of the
Developer Certificate of Origin (DCO)36 in 200437. The
DCO was added to provide additional legal protections
to developers and users without adding a significant
process burden. The DCO significantly improved the
ability to track paths taken by patches to get into the
kernel. Together with the transition of the version
control system to Git, DCO has eased the overhead
for developers to contribute over the last 15 years. It
has proved very popular with developers and has since
been adopted by other open source projects.

With the standardization of the use of the DCO in
2004 by the kernel community, almost all commits
now have a Signed-off-by tag associated with them.
There has also been a steady increase in visible reviews
associated with each commit. The addition of tags that
indicate a review (Reviewed-by and Acked-by) helps
with tracking those interested in an area and have had
a chance to comment and flag any concerns. Patches
may need to go through several cycles of review until
the relevant code maintainers have accepted the
changes. This level of scrutiny before changes are
committed is important to the quality of the kernel.

Signed-off-by tags have improved our knowledge
of the paths taken by patches into the kernel. On
average, there are usually two Signed-off-by tags
associated with each commit, reflecting the hierarchy
of maintainers prior to the merged code. The use of a
tag to indicate a review has occurred (either Reviewed-
by or Acked-by) has also steadily increased since its
introduction in 2007.

However, other tags that were introduced, have not
been as widely adopted and used as originally hoped.
Tags do provide scope for developer creativity to be
observed; some of the more interesting ones that
can be found when reviewing the git repositories
include: “Enthusiastically-ack’d-by”, “Thanks-
to”, “Based-on-the-original-screenplay-by”,
and “Catched-by-and-rightfully-ranted-at-by”.
Moving forward, it would be great to see more use of
“Tested-by”.

Linux Kernel Commits with Tags per Year

The Linux Foundation 152020 Linux Kernel History Report

https://developercertificate.org/
https://www.wired.com/2004/05/linux-whose-kernel-is-it/

Tags in the Linux Kernel per Year (excluding signed-off-by)

Type of Tags in the Linux Kernel per Year

The Linux Foundation 162020 Linux Kernel History Report

Release Model with Predictable Release Cycle Cadence
The Linux Kernel Release Model has evolved, and
releases are considered to be classified into one of four
categories: Prepatch (or “-rc”) kernels, Mainline, Stable,
and Long Term Stable38. Details and links to the active
Kernel releases can be found on https://www.kernel.org/.

The length of the release cycle cadence has undergone
much discussion and experimentation by the community.
Still, since 2011 the community seems to have found
a release model that works and supports the quality
they seek. In fact, the release cadence has become so
predictable, that a “Pointy-Haired-Boss tool”39, was
created so developers could quickly answer their corporate
managers’ question of “when will it be released?”

Each release cycle now starts with a two week “merge
window” when new functionality can be included with the
appropriate review into the git repository for the upcoming
release. Once it is tagged rc1, then the cycles of integration
testing, debugging, and stabilizing commence. A weekly
rc candidate is then tagged until the target quality and
stability is reached. The release is made, and the cycle
commences again with the next merge window.

More details on the kernel release model and how it
occurred can be found in Greg Kroah-Hartmann’s blog on
the history of how the community came up with this model40.

Left: source: https://www.kernel.org/ on 2020-08-20

Linux Releases per Year

The Linux Foundation 172020 Linux Kernel History Report

https://www.kernel.org/category/releases.html
https://www.kernel.org/
http://phb-crystal-ball.org/
http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://www.kernel.org/

Improving Automated
Testing the Kernel
Linux Kernel testing is a community effort. Static
analysis tools such as sparse (semantic parser)41,
smatch (source matcher)42, and coccicheck (semantic
patches that test for specific bugs)43 are run on Linux
Kernel trees by autotest bots44 such as 0-day45, Hulk
Robot46. In addition, fuzz testers such as Trinity: Linux
System Call Fuzzer47, and other tests are run to
find problems proactively. Fuzz testing48 tools such as
syzbot are run on various kernel trees. How do these
bots and tools fare finding problems? This graph shows
fixes in the kernel attributed to findings by various
bots, and tools.

The Linux kernel 5.4 development release statistics
highlighted the impact that bots have finding bugs
and being able to keep up with them49. The use of the
“Reported-by” tag, attributing the bots, is helping to
raise awareness of the role automation of testing is
playing in preventing regressions in each release cycle.

Bots Credited with Finding Bugs in the Linux Kernel

The Linux Foundation 182020 Linux Kernel History Report

https://sparse.docs.kernel.org/
http://smatch.sourceforge.net/
https://bottest.wiki.kernel.org/coccicheck
https://bottest.wiki.kernel.org/
https://01.org/lkp
mailto:hulkci@huawei.com
https://github.com/kernelslacker/trinity
https://lwn.net/Articles/536173/
https://lwn.net/Articles/804119/

 Stable Release Process
Active stable releases come out approximately once
a week. Let’s talk through the release process with
Linux 5.7.9 as an example. The release candidate
(rc) is announced in an email to the stable release
mailing list50 with a pseudo short log of commits
and information on where to download the release
candidate from for review and testing51. This release
candidate has 166 patches and all of these patches get
sent to the mailing list in separate emails. Individual
developers and automated test rings (Kernel CI,
0-day, etc.) test the release candidate and report
results in replying to the release candidate email.
Problems found in rc1 are fixed with subsequent rc2,
rc3 candidates. Release candidate testing is uneventful
and releasing rc2 is infrequent. Who does the testing?

Buildbot (for Linux kernel hwmon and stable-queue)52
builds the release candidate on all 30+ supported
architectures, including variants such as arm64 and arm
are built for multiple kernel configurations and reports
results53. A total of 31 architectures and 56 configs are
build tested during the stable release review cycle. LKFT
(Linux Kernel Functional Testing) ring builds and tests
release candidates on arm and arm64 hardware and
reports results54. Tests run include Linux Test Project
(LTP), Linux Kernel Selftests, Linux Perf, and many
more. For a complete list of tests run in this ring, refer
to LKFT Test documentation55, and Kernel CI56 ring
runs boot tests on several systems and reports results.

Once the release candidate gets sufficient testing, it is
released, and another email is sent out to announce the
release.

The Linux Foundation 192020 Linux Kernel History Report

https://lore.kernel.org/stable/
https://lore.kernel.org/lkml/20200714184115.844176932@linuxfoundation.org/
https://kerneltests.org/
https://kerneltests.org/one_line_per_build
https://lkft.linaro.org/
https://lkft.linaro.org/tests/
https://kernelci.org/

Longterm Release Kernels
The introduction of Longterm release kernels, based
on stable releases, has further increased Linux’s
popularity with product makers and increased
adoption in new market segments. Greg Kroah-
Hartmann wrote an excellent blog on which kernel he’d
choose for a task in 201857, and it provides a useful
overview for developers looking to select a kernel for
their project today. Details of the supported long term
stable releases and period until the end of the support
(Projected EOL) can be found at kernel.org.

Longterm release kernels start off as a stable kernel
with a commitment to maintaining for an extended
period. Distributions like SUSE, Ubuntu, Red Hat, etc.
helped to pioneer this concept, and it was formalized in
201058 with the formalization of “longterm” kernels and
creation of the stable@kernel.org mailing list.

Bugs found in the current linux stable kernel are fixed
upstream and then applied to the stable kernel. When
a fix is determined to be applicable to one of the
longterm release kernels, it is backported and applied.

Improvements in tooling to detect when a fix can
apply to a longterm stable kernel, like the work by

Sasha Levin on creating a tool using machine-learning
techniques to identify patches that look like useful
fixes59, have been significantly improving in recent
years, and are now finding more bug fixes that can be
applied to the longterm release kernels.

In 2019, 18,668 commits were made to the various
LTS kernels; that’s over 2.15 commits per hour. More
changes were made to the LTS releases in 2019 than
to the 2.6.12 kernel, 15 years ago.

 There is market pressure for even longer support
windows to support some of the applications
where Linux is being used. For example, the Civil
Infrastructure Platform (CIP) project60 members have a
common interest in having an infrastructure that needs
to be maintained for extended periods. The developers
participating in this project have decided to support
4.4 and 4.19 as Super Long-term Stable (SLTS) kernel
release61, 62. It will be interesting to see what tools and
processes these developers create to help make this
vision possible in the years to come.

Version Maintainer Released Projected EOL

5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 December 2025

4.19 Greg Kroah-Hartman & Sasha Levin 2018-10-22 December 2024

4.14 Greg Kroah-Hartman & Sasha Levin 2017-11-12 January 2024

4.9 Greg Kroah-Hartman & Sasha Levin 2016-12-11 January 2023

4.4 Greg Kroah-Hartman & Sasha Levin 2016-01-10 February 2022

Source: https://www.kernel.org/category/releases.html Tools Detect More Fixes for Longterm Linux Kernels

The Linux Foundation 202020 Linux Kernel History Report

http://kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use/
https://lwn.net/Articles/418580/
mailto:stable@kernel.org
https://lwn.net/Articles/789225/
https://www.cip-project.org/
https://www.cip-project.org/blog/2020/08/17/cip-kernel-team-helping-cip-sustain-industrial-grade-systems
https://lwn.net/Articles/749530/

Conclusion
In 2020, the Linux kernel earned a gold CII best practices
badge63, which demonstrates that the project applies
many practices to improve quality, improve security, and
prevent defects. We see the Linux kernel now being
used in products where security and safety-critical
considerations are essential, from medical devices64, to
autonomous vehicles65, and to spacecraft66. Improving
the infrastructure so that the right level of security and
safety analysis can be done confidently before using
Linux in these safety-critical applications is one of the
next big challenges that is being tackled67.

The focus of the kernel community to maintain a common
goal of having a high quality operating system with no
regressions, willingness to create new processes and
tools as needed to help them be more efficient continues
to improve dependability of the Linux kernel as it gets
deployed in new markets. Tooling improvements emerging
in the kernel testing infrastructure are helping developers
keep up with the rate change in the upstream kernel
and continue to improve the stable kernels and future
releases as being transparent about the processes
followed. Kernel developers have demonstrated they
are willing to question and discuss improvement and
welcome diverse perspectives. There now exists a great
foundation for the Linux kernel to continue to lead the
way in creating best practices that help the entire open
source software industry.

The Linux Foundation 212020 Linux Kernel History Report

https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://www.techdesignforums.com/practice/technique/medical-linux-security/
https://www.automotivelinux.org/about/
https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://elisa.tech/

Thanks
The authors would like to thank the tens of thousands of
individual kernel contributors; without them, papers like this
would not be interesting to anyone.

The authors would also like to thank those developers who
have taken the time and effort to create the infrastructure
to save the history of the Linux kernel development so that
others can learn from the best practices they’ve created.

The Linux Foundation 222020 Linux Kernel History Report

References
1 https://lore.kernel.org/lkml/CAHk-=wj+mDPbj8hXspXRAksh+1TmPj

ubc9RNEbu8EVpYyypX=w@mail.gmail.com/

2 https://lwn.net/Articles/827735/

3 https://www.linuxfoundation.org/publications/2008/04/linux-
kernel-development-report-2008/

4 https://cregit.linuxsources.org/

5 https://github.com/cregit/cregit

6 https://github.com/dmgerman/linux-pre-history/
commit/9417d4148f0ddc5ee2cc1114ce97c71c5e4cb4b7

7 https://archive.org/details/git-history-of-linux

8 https://repo.or.cz/davej-history.git/commit/
bb441db1a90a1801ef4e6546417a8d907c55d92f

9 Architecture counts taken from boot test coverage counts from
https://github.com/groeck/linux-build-test/tree/master/rootfs

10 https://www.coreinfrastructure.org/announcements/linux-
foundations-core-infrastructure-initiative-seeks-community-
input-on-new-security-focused-badge-program/

11 https://www.linuxfoundation.org/blog/2020/06/why-cii-best-
practices-gold-badges-are-important/

12 https://www.linuxfoundation.org/blog/2020/06/linux-kernel-
earns-cii-best-practices-gold-badge/

13 https://lore.kernel.org/ksummit-discuss/

14 https://repo.or.cz/davej-history.git/
commit/8bf26ec84e6362618e1abe641ac7f026c2674372

15 https://www.kernel.org/lore.html

16 https://korg.docs.kernel.org/lore.html

17 grep “M:” MAINTAINERS | sort | uniq | wc -l

18 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
tree/MAINTAINERS?h=v5.8.2

19 https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-
an-interview-with-git-creator-linus-torvalds/

20 https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/

21 https://repo.or.cz/davej-history.git

22 https://git.kernel.org/pub/scm/linux/kernel/git/history/history.
git//?h=1.0&id=13f97bf0ff18e367f94a5ebcf6e89998ecedb80f

23 https://github.com/tue-mdse/genderComputer

24 https://lwn.net/Articles/662911/

25 https://www.outreachy.org/

26 https://wiki.linuxfoundation.org/lkmp

27 https://communitybridge.org/

28 https://training.linuxfoundation.org/training/a-beginners-guide-
to-linux-kernel-development-lfd103/

29 https://www.youtube.com/watch?v=LLBrBBImJt4

30 http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-
model/

31 https://lwn.net/Articles/756031/

32 https://github.com/AlDanial/cloc

33 German, D.M., Adams, B. & Stewart, K. cregit: Token-level blame
information in git version control repositories. Empir Software Eng
24, 2725–2763 (2019). https://doi.org/10.1007/s10664-019-09704-x

34 git://git.lwn.net/gitdm.git

35 https://lwn.net/Articles/222773/

36 https://developercertificate.org/

37 https://www.wired.com/2004/05/linux-whose-kernel-is-it/

38 https://www.kernel.org/category/releases.html

The Linux Foundation 232020 Linux Kernel History Report

https://lore.kernel.org/lkml/CAHk-=wj+mDPbj8hXspXRAksh+1TmPjubc9RNEbu8EVpYyypX=w@mail.gmail.com/
https://lore.kernel.org/lkml/CAHk-=wj+mDPbj8hXspXRAksh+1TmPjubc9RNEbu8EVpYyypX=w@mail.gmail.com/
https://lwn.net/Articles/827735/
https://www.linuxfoundation.org/publications/2008/04/linux-kernel-development-report-2008/
https://www.linuxfoundation.org/publications/2008/04/linux-kernel-development-report-2008/
https://cregit.linuxsources.org/
https://github.com/cregit/cregit
https://github.com/dmgerman/linux-pre-history/commit/9417d4148f0ddc5ee2cc1114ce97c71c5e4cb4b7
https://github.com/dmgerman/linux-pre-history/commit/9417d4148f0ddc5ee2cc1114ce97c71c5e4cb4b7
https://archive.org/details/git-history-of-linux
https://repo.or.cz/davej-history.git/commit/bb441db1a90a1801ef4e6546417a8d907c55d92f
https://repo.or.cz/davej-history.git/commit/bb441db1a90a1801ef4e6546417a8d907c55d92f
https://github.com/groeck/linux-build-test/tree/master/rootfs
https://www.coreinfrastructure.org/announcements/linux-foundations-core-infrastructure-initiative-seeks-community-input-on-new-security-focused-badge-program/
https://www.coreinfrastructure.org/announcements/linux-foundations-core-infrastructure-initiative-seeks-community-input-on-new-security-focused-badge-program/
https://www.coreinfrastructure.org/announcements/linux-foundations-core-infrastructure-initiative-seeks-community-input-on-new-security-focused-badge-program/
https://www.linuxfoundation.org/blog/2020/06/why-cii-best-practices-gold-badges-are-important/
https://www.linuxfoundation.org/blog/2020/06/why-cii-best-practices-gold-badges-are-important/
https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://lore.kernel.org/ksummit-discuss/
https://repo.or.cz/davej-history.git/commit/8bf26ec84e6362618e1abe641ac7f026c2674372
https://repo.or.cz/davej-history.git/commit/8bf26ec84e6362618e1abe641ac7f026c2674372
https://www.kernel.org/lore.html
https://korg.docs.kernel.org/lore.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/MAINTAINERS?h=v5.8.2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/MAINTAINERS?h=v5.8.2
https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/
https://repo.or.cz/davej-history.git
https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git//?h=1.0&id=13f97bf0ff18e367f94a5ebcf6e89998ecedb80f
https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git//?h=1.0&id=13f97bf0ff18e367f94a5ebcf6e89998ecedb80f
https://github.com/tue-mdse/genderComputer
https://lwn.net/Articles/662911/
https://www.outreachy.org/
https://wiki.linuxfoundation.org/lkmp
https://communitybridge.org/
https://training.linuxfoundation.org/training/a-beginners-guide-to-linux-kernel-development-lfd103/
https://training.linuxfoundation.org/training/a-beginners-guide-to-linux-kernel-development-lfd103/
https://www.youtube.com/watch?v=LLBrBBImJt4
http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://lwn.net/Articles/756031/
https://github.com/AlDanial/cloc
https://doi.org/10.1007/s10664-019-09704-x
git://git.lwn.net/gitdm.git
https://lwn.net/Articles/222773/
https://developercertificate.org/
https://www.wired.com/2004/05/linux-whose-kernel-is-it/
https://www.kernel.org/category/releases.html

39 http://phb-crystal-ball.org/

40 http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-
model/

41 https://sparse.docs.kernel.org/

42 http://smatch.sourceforge.net/

43 https://bottest.wiki.kernel.org/coccicheck

44 https://bottest.wiki.kernel.org/

45 https://01.org/lkp

46 mailto:hulkci@huawei.com

47 https://github.com/kernelslacker/trinity

48 https://lwn.net/Articles/536173/

49 https://lwn.net/Articles/804119/

50 https://lore.kernel.org/stable/

51 https://lore.kernel.org/lkml/20200714184115.844176932@
linuxfoundation.org/

52 https://kerneltests.org

53 https://kerneltests.org/one_line_per_build

54 https://lkft.linaro.org/

55 https://lkft.linaro.org/tests/

56 https://kernelci.org/

57 http://kroah.com/log/blog/2018/08/24/what-stable-kernel-
should-i-use/

58 https://lwn.net/Articles/418580/

59 https://lwn.net/Articles/789225/

60 https://www.cip-project.org/

61 https://www.cip-project.org/blog/2020/08/17/cip-kernel-team-
helping-cip-sustain-industrial-grade-systems

62 https://lwn.net/Articles/749530/

63 https://www.linuxfoundation.org/blog/2020/06/linux-kernel-
earns-cii-best-practices-gold-badge/

64 https://www.techdesignforums.com/practice/technique/medical-
linux-security/

65 https://www.automotivelinux.org/about/

66 https://www.zdnet.com/article/from-earth-to-orbit-with-linux-
and-spacex/

67 https://elisa.tech/

The Linux Foundation 242020 Linux Kernel History Report

http://phb-crystal-ball.org/
http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
http://www.kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://sparse.docs.kernel.org/
http://smatch.sourceforge.net/
https://bottest.wiki.kernel.org/coccicheck
https://bottest.wiki.kernel.org/
https://01.org/lkp
mailto:hulkci@huawei.com
https://github.com/kernelslacker/trinity
https://lwn.net/Articles/536173/
https://lwn.net/Articles/804119/
https://lore.kernel.org/stable/
https://lore.kernel.org/lkml/20200714184115.844176932@linuxfoundation.org/
https://lore.kernel.org/lkml/20200714184115.844176932@linuxfoundation.org/
https://kerneltests.org
https://kerneltests.org/one_line_per_build
https://lkft.linaro.org/
https://lkft.linaro.org/tests/
https://kernelci.org/
http://kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use/
http://kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use/
https://lwn.net/Articles/418580/
https://lwn.net/Articles/789225/
https://www.cip-project.org/
https://www.cip-project.org/blog/2020/08/17/cip-kernel-team-helping-cip-sustain-industrial-grade-systems
https://www.cip-project.org/blog/2020/08/17/cip-kernel-team-helping-cip-sustain-industrial-grade-systems
https://lwn.net/Articles/749530/
https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://www.linuxfoundation.org/blog/2020/06/linux-kernel-earns-cii-best-practices-gold-badge/
https://www.techdesignforums.com/practice/technique/medical-linux-security/
https://www.techdesignforums.com/practice/technique/medical-linux-security/
https://www.automotivelinux.org/about/
https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://elisa.tech/

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

	Summary
	Introduction
	Kernel Archeology
	Impact of Development Process Best Practices
	Adoption of Maintainer Hierarchy
	Version Control Systems
	Removing Unused Code
	Highly Diversified Corporate Contributors
	Tagging and adoption of the Developer Certificate of Origin
	Release Model with Predictable Release Cycle Cadence
	Improving Automated Testing the Kernel
	Stable Release Process
	Longterm Release Kernels

	Conclusion
	References

